• ベストアンサー

この式を微分してください。

x=c/(a+bt) この式をtについて微分するという問題です。 2回微分したいのですが1回目は(a+bt-cb)/(a+bt)^2 2回目は{b(a+bt)^2-(a+bt)^2-(a+bt-cb)2b(a+bt)}/(a+bt)^4であってますでしょうか? 解くにあたって{f'(x)g(x)-f(x)g'(x)}/g(x)^2の公式を使いましたがもっとスマートな方法はありますか?

質問者が選んだベストアンサー

  • ベストアンサー
  • c_850871
  • ベストアンサー率53% (49/91)
回答No.1

残念ながら1回微分から間違っています. 定数cを微分すればゼロなので {(a+bt)・0-cb)/(a+bt)^2 =-cb/(a+bt)^2 ですから2回微分は {(a+bt)^2・0 - 2b(a+bt)・(-bc)}/(a+bt)^4 =2b^2c(a+bt)/(a+bt)^4 =2b^2c/(a+bt)^3 となります.

ichiro228
質問者

お礼

ありがとうございます。 しばらくやっていなかった為、変な勘違いをしてしまっていたようです。 助かりました。

関連するQ&A

  • 微分積分に関する問題なのですが、分かる方教えて下さい><!

    微分積分に関する問題なのですが、分かる方教えて下さい><! 曲線Cが極方程式 r=f(θ) (α≦θ≦β) で表わされる場合の曲線の長さLを与える公式を 「x=f(t)、y=g(t) (a≦t≦b)の長さLは、L=∫b/a√[(dx/dt)~2+(dy/dt)~2]dt=∫b/a√[{f´(t)}~2+{g´(t)}~2]dt」 という曲線の長さの公式を用いて導け。 ちなみに、 ∫b/a → ∫のbからaまでの範囲 (dx/dt)~2 → (dx/dt)の2乗 √の中身は、[ ]で囲んだところまでです。 見にくくて申し訳ないのですが、よろしくおねがいします。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 微分・積分

    仮にA=-Δy/Δxという公式があったとします。これはyの式をxで微分して-1を全体にかけろって考えかたでよろしいのでしょうか?仮に、xとyのパラメータを集めてそれをグラフ化し、エクセルで曲線のグラフを作ります。その曲線に近似曲線を当てはめて公式を作ったとします。この近似曲線の公式をyと見立ててxで微分して近似曲線の微分公式を作成して,個々それぞれのx値を代入していく方法で部分的なAという値は求まるのでしょうか?また近似曲線のR^2値は1に近ければ近いほど近似されていると考えてよろしいのでしょうか?近似曲線の次数を上げればあげるほどR^2値が1に近づく場合はやはり1番高い次数の公式を使用したほうがよいのでしょうか?微分積分と聞くとなぜか接線とか加速度・速度・距離の微分積分の関係をイメージしてうんですがいまいちよく理解できていない点が多すぎて困ってます。物理では昔、微分やら積分などを使っていた記憶があるのですが、そのとき微分・積分の式(Δy/Δxや∫f(x)dx)を色々とこねくり回して式を変形させていた記憶があります。この辺がいまいち思い出せなくて困っています。また、F=maをa=F/mとして時間tで積分していくとvという速度の公式になり、それまたvの公式を積分するとxという距離の公式になると思っているのですが、それぞれが不定積分なのでCなどというようなものがついてきます。それが初速度だったり、初期位置だったりというあいまいな記憶があるのですが間違っているのでしょうか?

  • 微分 可能 について 

    微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか?

  • 微分の式の指数の扱い方

    x=f(t)、y=g(t)で表されているとき。 d^2y/dx^2はどのように扱えばいいのでしょうか。 微分の式についている指数をどのように扱えばいいかわかりません。 つまり d^2yとdx^2をどのように扱えばいいかわかりません。 どなたか解説お願いします。

  • この1次近似式の問題の求め方を教えてください。

    (1)g(Arctanx+logy)の(x,y)=(a,b)のまわりでの1次近似式と偏微分係数を求めなさい (2)f(cosx+Arcsiny)を(x,y)=(a,b)のまわりで1次近似しなさい (3)Arctan(f(x,y))を(x,y)=(a,b)のまわりでi次近似しなさい (4)Arcsin(g(x,y,z))を(x,y,z)=(a,b,c)のまわりで1次近似しなさい (5)f(x,y,z)の(x,y,z)=(a,b,c)のまわりでの1次近似式を書きなさい。 (6)e^(xsiny)の任意点のまわりでの1次近似式を全微分の形式で書きなさい。 (7)x^2×y^3×z^4の任意点のまわりでの1次近似式を全微分の形式で書きなさい xはエックス、×はかけるの記号です。 わからない問題や、解いてみたけど自信がない問題なんで、式と答えを教えてください。 お願いいたします。 もちろん、全部でなくわかるやつだけでも全然かまいません。 お願いします。

  • Tanを含む式の微分

    少しばかり、実用に使う必要があるのですが、数十年昔に学んだ微分積分を忘れてしまいました。どなたか、下記の式をxについて微分して頂けないでしょうか。(dy/dx)を求める。 y=Tan(A * x^0.5)+ B * Tan(C * x^0.5) A,B.C は実数(定数) よろしくお願いします。

  • 全微分で2階導関数を求めるについて

    Z=f(X,Y),X=φ(t)Y=Ψ(t)がC2級のときtの関数Z=f(φ(t),Ψ(t))の2階導関数を求める問題の解き方が分かりません。 1階導関数は、全微分の公式を用いてすぐ求めることができるのですが、2階導関数の場合、d/dtを両辺に掛けたとき1階導関数を求めたときに式に現れる∂z/∂xに対してどのように式を変形していけばいいのかわかりません。回答よろしくお願いします。

  • この数式は微分できますか?

    微分に関する質問です。 y=A*exp(B*(C-x)*exp(-D*(x-F)))*exp(-G*exp(-D*(x-F)) といった数式をxで微分したいのですが、可能でしょうか? 可能であれば、詳しく教えていただきたいです。 ちなみに、exp(x)はeのx乗ということで、*は×(かける)です。 また、A,B,C,D,E,F,Gはすべて定数です。

  • 偏微分方程式

    f(t)は2回微分可能な関数であり、z(x,y)=f(3x-4y)が偏微分方程式zxx+zyy+z=0となるようなf(t)を求めよ。 というような問題で、zxxはzをxで2回偏微分したものを表しています。 手持ちの参考書には偏微分方程式についての記述がなく、どのように考えればよいのかわかりません。 ご回答よろしくお願いします。