• ベストアンサー
  • すぐに回答を!

ばねに連結された2物体

物理の初歩的な質問です。教えてください。 右図のように天井に軽い糸で質量mの小球Aをつるし、これにばね定数kのばねを取り付け、他端に質量Mの小球Bを結ぶ。はじめAもBも静止している。重力加速度をgとして、次の設問に答えよ。 (1)ばねの伸びを求めよ。 (2)時刻t=0に糸を切る。その後のAの速度を時刻tの関数として式に表せ。 (1)はBのつりあいからd=Mg/kでいいと思います。 (2)なんですが、重心が加速度gで落下するので重心から運動をながめますよね?そうするとAのばね定数ka=(m+M)k/M、ω=√(m+M)k/mMでAの座標Xa=Asin(ωt+θ)で表せるはずなんですが、このときの振幅Aってどうやって求めるのでしょうか?あと、これを微分して重力による速度gtを足せば答えでいいでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1680
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

重心は自由落下をします。したがって,重心から見た運動は無重力下の運動になりますね? したがって,振動は自然長をつりあい状態として,振幅合計が初めのばねの伸びdになるはずです。 >これを微分して重力による速度gtを足せば… 下向きを正にとるとそういうことになりますね。

共感・感謝の気持ちを伝えよう!

質問者からの補足

振幅A=dでいいということでしょうか? dはAとBの振幅を合計したもので、Aの振幅はdより小さい気がしてならないんですが…。

関連するQ&A

  • ばねに付けられた物体の運動

    質量がMの小球Aと、mの小球Bを、 ばね定数kのばねでつなぎ、それをなめらかな溝で運動させる。 ある瞬間にAに突然右向きに速度vを与えると、その後AとBは振動しながら全体として右向きに進んでいく。 (1)重心の速度の大きさを求めよ。 (2)重心から見たBの運動は単振動になる。その周期を求めよ。 (3)重心から見たBの単振動の振幅を求めよ。 上のような問題で、(1)はV = {M/(M+m)}vで分かるのですが、 (2)に関しては、運動方程式を立てる方法がわからず、 また、解答は(ばね定数はばねの長さに反比例する)という方式を用いていてあまりしっくり来ません。 個人的にはAとBの運動方程式をどうにか立てて、そこから解いていきたいのですが、この問題の場合は立てることは不可能あるいは無意味でしょうか? もし可能であるならば立て方を教えて頂きたいと思います。どうぞ宜しくお願いします。 因みに、(1)の答えは右の通り、(2)は2π√[(Mm)/{(M+m)k}]、(3)は{Mv/(M+m)}√[(Mm)/{(M+m)k}]

  • ばねの問題

    軽いつる巻きバネの一端を天井に固定し、他端に質量m[kg]の小球をつるしたところ、ばねがx0[m]伸びた位置で釣り合った。この位置から小球を下方へA [m]ひいてはなしたら、小球は釣り合いの位置を中心として振動した。重力加速度の大きさをg[m/s^2]とし、釣り合いの位置を重力による位置エネルギーの基準にとって次の問いに答えよ。 (1)このばねのばね定数は何N/mか。 (2)最下点における重力における位置エネルギーと弾性力エネルギーによる位置エネルギーの和は何Jか。 (3)小球の力学的エネルギー保存より、ばねがつりあいの位置を通過する瞬間の小球の速さを求めよ。 この問題は先生が考えた問題だそうです。 (1)は解けたのですが(2)、(3)を解くことができません。 (3)は何回やっても答えがv=√(g/x0A)になってしまい、解答に行き着くことができません。 お手数かけますがこの問題を解いてくれませんか。よろしくお願いします。

  • 鉛直につるしたばねの問題

    質量が無視できるばね(バネ定数k) を上端に固定し下端に質量mの小球をぶら下げる するとばねはのびて小球は静止。 次にばねが自然長になるように鉛直上向きに引き上げt=0で静かに放す。 下向き正としてz軸をとるとする。ばねの自然長の位置をz=0とする 時刻tにおける小球の速さをv(t)、位置をz(t)とする。 また重力加速度をgとする。 (1)小球の初期条件を記せ(t=0における小球の位置と速さ) これは静かに放したというところから v(0)=0 z(0)=0 (2)小球の運動に関する運動方程式を記せ md^2z/dt^2 = mg-kz (3)v(t) z(t)を初期条件を用いて表せ z・・=g - (k/m)・zより z・・=-(k/m)(z - mg/k) より解がAsin(wt-φ) から 初期条件より w=√[k/m]から z(t) = Asin√[k/m]t v(t) = A√[k/m]cos√[k/m] (4)時刻t における小球の重力による位置エネルギーを求めよ (5)時刻tにおける小球の運動エネルギーを求めよ K = 1/2 m ・(A√[k/m]cos√[k/m])^2 = 1/2 m A^2(k/m)cos^2√[k/m] (6)tにおけるばねの弾性力による位置エネルギーをもとめよ と自力でやってみたところとお手上げのところがありました。 そもそも全て自信がありません。 ご教授お願い申し上げます。

  • バネ定数を求める問題

    高校物理の範囲の問題です。 なめらかな面を持つ台形の水平な上面にばね定数がKで質量を無視できるばねが取り付けられている。 ばねの一端には、たるませた上体で長さ4a(m)の質量を無視できるひもが取り付けられており、ひもの他端には質量m(kg)の小球が取り付けられている。 台形の斜面の最高点Aからばねの端までの長さはa(m)、斜面の角度は30度であり、最高点Aには小さな半径を持つ質量を無視出来る滑らかな滑車が取り付けられている。 いま、小球を台形の斜面に沿って上からa(m)の一、点Bに固定し、その後、小球を静かに放した。 重力加速度をg(m/s^2)とし、ひものたるみが無くなるまでの時間tを求めるとt=[あ](s)である。 小球は最下点に達した後、糸がたるむことなく上昇し始めるが、最下点におけるばねののびはa/2(m)であった。よってばね定数はk=[い](N/m)である。 図は添付ファイルのものです。 [あ]は、重力加速度g/2で自由落下するとして考えて、t=2√(2a/g)になりました。解答は合っているようです。 (もしかしてこの考え方も間違えているでしょうか?) ただ、[い]がどうやって求めたらいいのかわかりません。 解答としては「10mg/a」らしいのですが……。 どのように求めたらいいのか教えてください。 よろしくお願いします。

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • 鉛直方向のばね振り子

    ばね定数kの軽いばねを天井からつるし、他端に質量mの小球Aを取り付け、ばねが自然長になるようにAを手の上にのせて支えた。このときのAの位置を原点Oとし、鉛直下向きを正の向きとしてx軸をとる。また、重力加速度の大きさをgとする。 (a)Aを手の上にのせたまま、O(x=0)からゆっくりと鉛直に下降させたところ、やがてAは手から離れて静止した。Aが手から離れた時のAの位置をPとし、Pの位置座標をx=x0とする。 (1)Aが座標x(0<x<x0)にあるとき、手がAに加えている力を求めよ。ただし、鉛直下向きを正とする。 という問題で、自分は小球Aにはmgとばねの弾性力kxが働いているから、それでしかも鉛直下向きを正と書いてあるから、 弾性力は伸びた位置から上向きに行こうとするからーkxとして、重力は正の向きに働いているからmgで運動方程式F=mgーkxと式を立てたのですが、解答ではF=kxーmgとなっていたのですがなぜなのでしょうか?

  • 物理教えてください;;

    質量mのジェットコースターが高さhAからhBまで動くとき、重力のする仕事を求めよ。重力加速度の大きさをgとする。 質量mの小球を初速度v0で鉛直に投げ上げる。高さyのところでの速さをv、重力加速度の大きさをgとして、力学的エネルギーが一定であることを表す式を立てよ。 また、その式から最高点の高さhを求めよ。 ばね定数25N/mのばねの上端を固定し、下端に質量mのおもりをとりつけると、ばねは自然の長さからa(m)だけのびてつりあった。 この状態から、速さ1.0m/sでおもりを下向きにはじいたところ、ばねはさらにx(m)だけ伸びた。 a,x(m)を求めよ。

  • ばねに関して

    ばね定数k、自然長がlのばねの一端を原点に固定し、他端に質量mの質点を定め比例定数bの抵抗(速度に比例)があるときの運動方程式は・・・ F=kl-b(dx/dt)なのでしょうか??

  • ばねに関する問題です

    ばね定数k、自然長lのばねの左端を固定し、右端に質量mの物体をつける。床に動摩擦係数μ'、静止摩擦係数μがあるときを考える。つりあいの位置(x=0)から長さlだけばねの伸びる方向に移動させて放したとする。(ただしlはμによる静止摩擦力よりも大きな力を発生させるだけの長さとする)重力加速度をgとして運動方程式を示せ。また、ばねが最も縮む時刻t(ばねをlだけ伸ばして放した時間をt=0)ならびに、そのときのxをそれぞれ求めよ。 運動方程式をたてるのに、物体の動く向きが変わったら摩擦力の向きも変わるわけですが、どう書けばいいのかわかりません。ご教授お願いします。

  • ばねの運動

    大学で基礎力学を履修しているものです。 今、重心のところを習っているんですが、次の問題がわかりません。 「自然長l、ばね定数kのばねの下端に質量m1の物体A、上端に質量m2の物体Bをとりつける。物体Bを支えた状態から静かに離して自由落下させたときの運動を考える。鉛直下向きにZ軸をとり、物体A,BのZ座標をそれぞれz1,z2とする。時刻T=0における物体Bの位置を原点とする。重力加速度の大きさをgとして次の問いに答えよ。 (1)T=0における物体の位置を求めよ (2)物体A,Bの運動方程式をそれぞれ書き下せ (3)重心座標の運動方程式を求め、これをといて重心座標を時刻Tの関数としてあらわせ (4)相対座標の運動方程式を求め、これをといて相対座標の運動方程式を時刻Tの関数として表せ という問題です。 (1)はわかるんですが、(2)、(3)、(4)がわからないです。 (2)は、考えてみたところ、m1a=m1-k(l-z1) m2a=(m1+m2)gーk(l-z1)となりました(a=d^2x/dt^2)