• ベストアンサー
  • 困ってます

ばねに付けられた物体の運動

質量がMの小球Aと、mの小球Bを、 ばね定数kのばねでつなぎ、それをなめらかな溝で運動させる。 ある瞬間にAに突然右向きに速度vを与えると、その後AとBは振動しながら全体として右向きに進んでいく。 (1)重心の速度の大きさを求めよ。 (2)重心から見たBの運動は単振動になる。その周期を求めよ。 (3)重心から見たBの単振動の振幅を求めよ。 上のような問題で、(1)はV = {M/(M+m)}vで分かるのですが、 (2)に関しては、運動方程式を立てる方法がわからず、 また、解答は(ばね定数はばねの長さに反比例する)という方式を用いていてあまりしっくり来ません。 個人的にはAとBの運動方程式をどうにか立てて、そこから解いていきたいのですが、この問題の場合は立てることは不可能あるいは無意味でしょうか? もし可能であるならば立て方を教えて頂きたいと思います。どうぞ宜しくお願いします。 因みに、(1)の答えは右の通り、(2)は2π√[(Mm)/{(M+m)k}]、(3)は{Mv/(M+m)}√[(Mm)/{(M+m)k}]

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数972
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>ばね定数はばねの長さに反比例する これは何かの間違いでしょう。 自然長をlとして、重りの座標をxA, xBとし、配置がxB > xAである場合について、 バネの伸びは xB-xA-l で、他に運動方向の力は働いていないので、 M aA = k(xB-xA-l) m aB = -k(xB-xA-l) が運動方程式。 以下、重心の座標がX = (M xA + m xB) / (M+m)であることを考慮して 上の二式を足したり引いたりすれば答に行きつきます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ばねに連結された2物体

    物理の初歩的な質問です。教えてください。 右図のように天井に軽い糸で質量mの小球Aをつるし、これにばね定数kのばねを取り付け、他端に質量Mの小球Bを結ぶ。はじめAもBも静止している。重力加速度をgとして、次の設問に答えよ。 (1)ばねの伸びを求めよ。 (2)時刻t=0に糸を切る。その後のAの速度を時刻tの関数として式に表せ。 (1)はBのつりあいからd=Mg/kでいいと思います。 (2)なんですが、重心が加速度gで落下するので重心から運動をながめますよね?そうするとAのばね定数ka=(m+M)k/M、ω=√(m+M)k/mMでAの座標Xa=Asin(ωt+θ)で表せるはずなんですが、このときの振幅Aってどうやって求めるのでしょうか?あと、これを微分して重力による速度gtを足せば答えでいいでしょうか?

  • ばねの両端に違う質量をつるした単振動

    質量m ,M の物体を ばね定数kのばねの両端にそれぞれつけた。 この時の運動方程式を表せMの位置をX、mの位置をxとする とかいてありました。 解答がいきなり それぞれの運動方程式から mM(X・・ - x・・) = -k(m+M)(X-x-l) となっていました。 これを自分で求めたくて考えました。 mは mx・・ = k(X-x-l)  ・・は二回微分 Mは MX・・= -k(X-x-l) と運動方程式を立ててみましたがあってますか。 lはみずらいですが1じゃなくて自然長のエルです。 もしもこの方程式があってるなら答えをこの式からどうやってつなげばいいのか教えてくれませんか。

  • 鉛直ばね振り子の減衰振動の運動方程式について

    摩擦のある水平面でばね振り子減衰振動の運動方程式は m(d^2x/dt^2)=-kx-α(dx/dt) kはばね定数 で与えられると思いますが、鉛直ばね振り子の場合、重力のmgは運動方程式に加えなくてもよいのでしょうか? それとも 高校のころ、単振動の問題を解くとき、鉛直ばね振り子の場合はx=lを釣り合い位置としてkl=mg k=mg/l がこの場合のkであって、ばね定数とは違う値だ、というようなことを習った記憶があるのですが、この場合のkもそれでしょうか?

  • ばねの運動

    大学で基礎力学を履修しているものです。 今、重心のところを習っているんですが、次の問題がわかりません。 「自然長l、ばね定数kのばねの下端に質量m1の物体A、上端に質量m2の物体Bをとりつける。物体Bを支えた状態から静かに離して自由落下させたときの運動を考える。鉛直下向きにZ軸をとり、物体A,BのZ座標をそれぞれz1,z2とする。時刻T=0における物体Bの位置を原点とする。重力加速度の大きさをgとして次の問いに答えよ。 (1)T=0における物体の位置を求めよ (2)物体A,Bの運動方程式をそれぞれ書き下せ (3)重心座標の運動方程式を求め、これをといて重心座標を時刻Tの関数としてあらわせ (4)相対座標の運動方程式を求め、これをといて相対座標の運動方程式を時刻Tの関数として表せ という問題です。 (1)はわかるんですが、(2)、(3)、(4)がわからないです。 (2)は、考えてみたところ、m1a=m1-k(l-z1) m2a=(m1+m2)gーk(l-z1)となりました(a=d^2x/dt^2)

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • ばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい (1)、(2)は一応できたのですが(3)がまったくわかりません。よければとき方、答えをお願いします

  • ばねのもつエネルギーについて

    質量mの物体がばね定数kのばねでつり下げられている。1.物体をつるさないときのばねの長さをyとすると、物体をつるしたときのつりあいの位置でのばねの長さLを求めよ。2.また、質量mの物体をつるしたときのつりあいの位置を原点とし鉛直下向きにx軸をとる。ばねをつりあいの位置から鉛直下向きにx=Lだけ下げ話したときの物体の運動方程式を求め、3.物体の運動が単振動になることを示し振動の周期Tを求めよ。 この問題で1はmg=-k(L-y)で、L=にすればいいのでしょうか。2は運動方程式をどこまで求めればいいのかわかりません。3.は証明の仕方がよくわからないです。              

  • 重心の運動

    質量m、2mの質点が、自然長l、ばね定数kのばねで接続されている。 この一連の物体が振動しながら並進運動している時、重心の速度を求めよ。 ただし、質量mの質点の位置はx1、2mはx2、重心はx3とする。 (右向き正の一次元運動とし、x1<x2) という問題です。以下微分は’で表現します。 重心座標 x3=(mx1 + 2mx2)/(3m) 換算質量 μ=2m^2/3m ばねの伸び d=x2-x1-l だと思うのですが、重心の運動方程式は μx3''=-kd でしょうか?仮にこれの場合、積分定数をv0として、 重心速度 v=x3'=(-kd/μ)t + v0 となるのでしょうか? 重心などの2体問題が非常に苦手で、どう解いていいのか混乱してしまいます。 この場合、重心に直接働く力は無いと思うのですが、運動方程式に書く場合はどうすればよいのでしょう?2つの質点に働く力の合計でしょうか?(それだと異符号かつ絶対値同じで0になる気がしますので、上の解答では-kdだけ書きましたが・・・。) また、質量は換算質量でよいのでしょうか?それとも全質量でしょうか? ご教授の程、よろしくお願い致します。

  • 2次元平面におけるばねの運動に関する問題

    x-y平面の原点にばね定数 k のばねがつながれている。ばねの自然長は L で、ばねのもう一方の端には質量 m の質点がつながれている。 1.質点の位置を(x,y)としたとき、ばねが質点に及ぼす力 F のx成分とy成分を求めよ。 2.質点に対するx,y方向の運動方程式をそれぞれ記述せよ。 3.質点の運動方程式を極座標形式に書き換えよ。 4. 3.の運動方程式を解け。 という問題なのですが、困ったことに解答がありません。なので1.がどうしてもxとyであらわす方法が分からないので先に進めなくて困っています。わかる方がいましたらよろしくお願いします。

  • 物理のばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい なんですが解き方と答えを教えてください!お願いします