自己インダクタンスの計算方法とその原理

このQ&Aのポイント
  • 自己インダクタンスの計算方法とその原理について解説します。
  • 2本の平行な導線の自己インダクタンスの計算式はL=(μdlog[(b-a)/a])πです。
  • 導線間の磁束Φを考えるとΦ=2μId∫[a→(b-a)]dr/rという式が導かれます。
回答を見る
  • ベストアンサー

自己インダクタンスの計算

2本の半径aの長い導線が間隔bで平行に置いてあり,逆向きの電流Iが流れている.おの平行導線の永さdあたりの自己インダクタンスLはL=(μdlog[(b-a)/a])π (μは真空中の透磁率) となることを示せという問題があるのですが,2辺の長さがb,dの長方形を貫く磁束Φを考えると,2本の導線Gが磁場を貫くのでΦ=2μId∫[a→(b-a)]dr/rという式が導かれています 私にはなぜこのような式が導かれるのかがよくわかりません. またどのような図で考えればいいのかもよくわからないです・・・. なぜこのような結果が導かれるのか分かる方がいらっしゃいましたら教えていただけるとありがたいです. よろしくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
noname#154783
noname#154783
回答No.2

すみません.ANo.1に図を添付し忘れました. 改めて添付します.

sekihoutai
質問者

お礼

わかりやすく説明をしていただきありがとうございました

その他の回答 (1)

noname#154783
noname#154783
回答No.1

直線電流が十分長いとき,直線電流 I からの距離が r の位置の磁束密度は B = μI/(2πr) と表されます.ただし,この式は直線電流の端の方では成り立ちません. さて,この問題の状況は添付した図のようになっているんだと思います. あんまり端の方でない領域(図中の灰色の領域)では,上の式が使えますので, 図の,濃い灰色の領域を貫く磁束は ΔΦ = {μI/(2πx) + μI/(2π(b-x))}d Δx = μId/(2π) {1/x + 1/(b-x)}Δx. ∴Φ = ∫dΦ = μId/(2π) ∫[a,b-a]{1/x + 1/(b-x)}dx = μId/(2π) { log( (b-a)/a ) - log( a/(b-a) ) } = μId/π log( (b-a)/a ). これが,導線の長さ d あたりの磁束. したがって,長さ d あたりの平行導線の自己インダクタンスは L = Φ/I = μd/π log( (b-a)/a ).

関連するQ&A

  • 自己インダクタンス

    2本の半径aの長い導線が間隔dで並行に置いてあり、逆向きの電流Iが流れている。この平行導線の長さlあたりの自己インダクタンスはL=(μl/π)log(b/a)であることを示せ という問題なんですが、途中計算で Φ=2×(μIl/2π)×[dr/rをaからa-dで積分] と書いてありました。なぜaからa-dで積分するのですか? 間隔はdなのだからΦ=2×(μIl/2πd)じゃないのですか?

  • 磁束 相互インダクタンス

    2つの辺の長さがそれぞれa1,a2である。a1,a2は直角を挟む辺であり、これらの辺によって直角三角形コイルを作る。 コイルは、十分に長い直線の導線と同じ平面内に置かれており、長さa2の辺は直線の導線と平行かつ 導線から最も離れている。導線に近い頂点と導線の距離はdである。真空の透磁率をμ0として問に答えよ。 (i)直線導線に電流を流す。三角形の内部にあり、直線の導線から距離zの位置にある微小な幅dzの領域の磁束をφとして、この系の相互インダクタンスを求めよ。 (ii)三角形コイルの置き方を、 長さa2の辺が直線の導線と並行でかつ最も近くなるようにする。 辺a2と導線の距離は変わらずdとする。 この系の場合、相互インダクタンスは先ほどと比べてどのように変化するか。 理由も答えよ。 これらの問題はどのように解けばよろしいのでしょうか? どなたかご教授ください。

  • 自己インダクタンスの求め方

    自己インダクタンスの求め方 直径が2dの導線を間隔Dで平行に置いたとき、導線の単位長さあたりの自己インダクタンスは D>>dのとき、 L=μ0ln(D/d)/π 導出の仕方がわかりません。 分かる方教えてください。

  • 自己インダクタンス

    L=µ₀(n^2)ls L:自己インダクタンス µ₀:真空透磁率 n:単位長さあたりの巻き数 l:長さ s:断面積 長さ100mの導線を均一に巻いてつくられた長さ10cm、半径3cmのソレノイドの自己インダクタンスを求めよ。 l=0.1m   s=0.03×0.03×π (πは円周率) まではわかるのですかnがわかりません 詳しい解説お願いします ちなみに、参考書によると、答えはL=1.0×10^(-2)Hです。 参考書の答えにあるHもわかりません。µ₀に関係するのですか?

  • 真空中単位長辺りのインダクタンスの計算

    インダクタンスの求め方についての質問です。 真空の無限に広がる空間内に、半径R、無限長の直線の銅線bがあるとした場合に、 銅線bの単位長(1[m])あたりのインダクタンスLuを求めたいのですが、 どう計算するのでしょうか? 銅線に電流Iが流れているとした場合、 その電流Iによ作られる磁場のエネルギーをWとすると、 インダクタンスLは、  L=2*W/(I^2)         (1) となり、電流により作られる磁場のエネルギーにインダクタンス値が比例すると思います。 私の計算では、銅線bの単位長に流れる電流Iによる磁束のエネルギーWuが 以下のように無限大になってしまいます。(つまりLも無限大) どこかおかしいでしょうか? ---------------------------------------------------------- Wu = ∫B・H dv   = ∫μ|H|^2 dv        (2)  (μ:真空の透磁率) ここで、アンペア周回積分の法則から、磁界Hの大きさは線bからの距離をrとすると  |H| = I/(2πr)          (3) となるため、(2)は次のようになる。 Wu = ∫μ(I/2πr)^2 dv   = (μ/2π)∫(1/r)^2 dv   (4) ここで、線bからの距離rから微小長drに含まれる円周形の体積をdvとすると、 dv = 2πr・dr  であるから、 Wu = (μ/2π)∫(1/r)^2 dv   = μ∫(1/r) dr   = μ[log(r)] :R->∞   = ∞               (5)

  • インダクタンスについて。

    電磁気の授業で相互インダクタンスと自己インダクタンスについての 授業があったのですがよく分からなくなってきたので質問します。 授業の流れはこのような感じです。 (1)まずファラデーの法則 1)φe.m. = -dΦ/dtである。(大丈夫でした) 2)このときΦ=∫s BndSで表される磁束と呼ばれる量である。 3)最終的に   → →    →   → ∫c0 E・ds = -∫∂B/∂t・dS と導出した。 (2)準定常電流について 1)アンペールマクスウェルの方程式にて変位電流∂D/∂tが無視できるなら準定常電流とする。 このときファラデーの法則φe.m. = -dΦ/dtは無視できない。 2) ・コイルC1とコイルC2がある。 ・C2には電流I2が流れている。 ・C2から離れたところにあるC1での磁束をΦ1とする。 ・Φ1はI2のつくる磁場B2によるので  Φ1 ∝ I2  である。よって間の比例定数を  Φ1 = M12 I2 【1】 ここでM12を二つのコイルの幾何的量に依存する比例定数として 相互インダクタンスと呼ぶ。 よってファラデーの法則はφe.m. = -dΦ/dt = -M12 dI2/dtとも表せる 次にいきます。 ・I2が変化するとB2も変化する ・すると磁束Φ1も変化する ・磁束Φ1の変化を打ち消す方向に磁場B'が発生させるように誘導電流I1が発生する。 ・誘導電流I1のつくる磁束Φ1への寄与は当然I1に比例する。よってその比例係数をL1とすると  Φ1 = L1I1 + M12I2 【2】 となる。 ・・・ と続く授業だったのです。 それで疑問になったのですが なぜ一番最初に相互インダクタンスを定義した式【1】には なぜその後にある式【2】では入っている自己インダクタンスは含まれないのでしょうか。 I1が流れていない一瞬について考えたのが【1】なんでしょうか。 混乱しました( ̄Д ̄;; よろしくお願いします。

  • ソレノイドの磁束について(自己インダクタンス)

    芯が透磁率μの長いソレノイド(長さl、断面積S,1mあたりn巻き)で電流Iが流れているときの話です。 このソレノイドの自己インダクタンスを求めようとしました。 自己インダクタンスを求めようと磁束を考えたときのことです。 磁束密度がμnIということは分かるのですが、磁束になると「磁束密度×S×nl」となるところが分かりません。 具体的には「磁束は1巻きごとにμnIS」が理解できません。 磁束"密度"なのだから、ソレノイドの断面積をかければソレノイドを走る全ての磁束数が出るように思えます。 磁束密度がソレノイドの1巻き分のものしか考えてないのであれば、結局ソレノイドのある断面の磁束数も巻き数倍しないといけないのでは?などと考えてしまいます。 回答をお待ちしております。 (文章が少し変かもしれません、すみません)

  • 自己インダクタンスと静電容量

    自己インダクタンスについて、環状鉄心の断面積をA、磁路の平均長さをl、透磁率をμ、コイルの巻数をNとすると、 環状コイルの自己インダクタンスLは L=μ・ANの2乗/l  とあらわされる。とあるのですが、なぜでしょうか。 また、コンデンサの静電容量について、金属板の面積A、金属板の距離l、絶縁物の透電率をεとすると、静電容量Cは C=ε・A/l   とあらわされるとあるのですが、なぜでしょうか。 これらの式の導き方を教えてください。

  • 物理の質問。

    まっすぐな円筒にまかれた導線がある。単位当たりの巻き数はn、総巻き数はN、円筒の断面はSであり、内部の透磁率はμである。 a)電流Iが流れているとき、円筒内部の磁束密度 b)この導線の自己インダクタンス c)この導線に重ねて、単位当たりの巻き数m、総巻き数Mの導線まいたときの、この二つの導線の相互インダクタンス 自分なりに時解きましたが、 a)H=nI よりB=μnI b)Φ=μnIS、ΦがN回貫くのでL=NΦ/I=μnNS ここまであっているでしょうか? またc)の相互インダクタンスの求め方がいまいちよくわかりません。 解説お願いします。

  • 次の電磁気学の問題の解答解説をお願いします。

    図のように3本の無限に長い平行導線1,2,3が互いに並行かつ断面が一辺の長さがa[m]の正三角形をなすように置かれている。各導線には同じ大きさの電流I[A]が図のように流れている。真空の透磁率をμとする。 (1)正三角形の中心oにおける磁束密度の大きさと方向は? (2)各導線に働く1[m]あたりの力の大きさと方向は?