- ベストアンサー
- 困ってます
二つのバネで引っ張られた物体は単振動する?
なめらかな水平面上で、質量mの物体を 自然長l、ばね定数Kの二つのバネで2dだけ 離れた二点ABの中央に取り付けます。 この物体を図の方向(ABの中心から、線分ABと垂直な方向)に xだけ変位させて、手を離したとき、この物体は単振動を するのでしょうか? 単振動の条件というものを探してみたところ、 xに比例した、振動の中心向きの力がかかると単振動になると あったのですが、この場合は計算してみると、2つのバネから 受ける振動の中心向きの力は F=-2K((x^2+d^2)-l)*x/(x^2+d^2)^(1/2) と、計算が間違えていなければなると思うのですが、 これは単振動しているといえるのでしょうか?
- Tea-tea-woo
- お礼率100% (3/3)
- 物理学
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- cyototu
- ベストアンサー率28% (393/1368)
答えは、|x/d|≪1であれば、とても良い近似で単振動するとして良いのです。 それを証明します。 いま、その質量に働く力が、以下にこれから説明するを満たす、無次元量の変位ξ≡x/d の任意の関数fを使って (1) F=f(ξ) で表されているとします。その条件とは、 (2) f(ξ)はξ=0のところで正則である。 (3) f(0)=0 (4) f'(ξ) ≡ df(ξ)/dξ < 0 更に、 (5)|ξ| = |x/d| ≪1 の場合を考えることにします。 先ず、条件(2)により、f(ξ)はξ=0のまわりでテーラー展開可能であり、 (6) F = f(0) + ξf'(0) + (ξ^2/2)f"(0) + (ξ^3/3!)f'''(0) + ... とξの級数で書けます。ただしここで f"(ξ)はξに関する2階微分、f'''(ξ)は3階微分、、、を表しています。さらに(3)により、 (7) F = ξf'(0) + (ξ^2/2)f"(0) + (ξ^3/3!)f'''(0) + ... となります。したがって(5)の場合には、ξの高次の項が無視できて、大変良い近似で、 (8) F ≈ ξf'(0) = (x/d)f'(0) が成り立ちます。また、条件(4)により、(8)式の x の係数は負ですから、その質量は大変良い近似で単振動を行います。 しかし、もし|x/d| が1のオーダーかそれより大きくなると、(7)を(8)で近似できなくなりますので、単振動をしなくなります。 どうですか、条件(2)~(5)を満たす力ならどんな力でも、変位 x が十分小さい限り単振動で近似できるんですよ。凄いでしょう。 逆に、その条件のどれか一つでも満たさない場合には、単振動では近似できません。 貴方の例はその条件を満たしている場合ですね。 さてこの事から大変重要なことが分かります。どんな複雑な力が働いていても、もしその力が条件(2)~(5)を満たす力ならどんな力でも、その質点は単振動を行います。だから、物理学では殆どの問題で単振動が現れて来ます。だから、物理学ではことさら単振動を勉強させられるのです。 また、条件(2)~(5)のどれかが満たされなくなると、単振動をしない全く違った振る舞いをするようになります。だから、物理学者はそのような場合にも大変興味を持っています。 以上のように、条件(2)~(5)を満たすと、力は変位の1次関数に比例します。1次関数は真っすぐですから、これを線形系と言います。そして(8)の近似の事を線形近似と言います。 ところが、条件(2)か(5)のどちらかを満たさなくなると、力を変位の一次の関数では近似できなくなってしまいます。その場合、力は必然的に変位に関して曲線になりますから、それを非線形系と言います。非線形系の典型な振る舞いで特に重要なのは、カオスとして知られている振る舞いであり、現在世界中の物理学者や数理科学者達が研究しています。 非線形系の物理学は現在でも解らない事だらけです。だから、これからの若い方達に頑張ってもらわなくてはならない物理学の分野です。
関連するQ&A
- 高校物理、2本のばねに繋がれた物体の運動
滑らかな水平面上で質量mの物体にばね定数kのばねをつけ、どちらのばねも自然長になるようにして両端を壁に固定した。(物体がばねに挟まれている)物体を右にdだけずらして静かに放した時の振動の周期と、振動の中心を通るときの速さを求めよ。 (解答) 右向きを正とする。右にxだけ変位したときの加速度をaとすると、ma=-2kx k>0より、この運動は単振動である。 ここまで出来たのですが、続きがわかりません。教えてください。
- ベストアンサー
- 物理学
- バネの鉛直における単振動
鉛直につるしたバネの単振動において、つりあいの位置からの変位とすれば重力を考えずにすむことはよく知られていますが、自然長から考えてつりあいの位置に行くまでの物体の変位を時間tを使った形で知りたい場合はどう考えればよいのでしょうか。m*(d^2x/dt^2)=m*g-k*xの式をxについて解き、tで表すことができません。数学の問題なのかも知れませんが、お答え頂ければ幸いです。
- ベストアンサー
- 物理学
- 単振動
こんばんは。高校物理の単振動に関する問題です。 [問題] 振幅A、振動数fの単振動をしている物体の、振動の中心を原点としたとき、時刻tにおける物体の変位xを表す式を記せ。ただし、時刻t=0における変位はAであったとする。 [解答] この解答として、単振動の変位はx=Asin(ωt+Φ)で与えられる。ω=2πfであり、周期t=0における変位はAであるから、Φ=π/2となり、x=Acos2πft とありました。ここで質問ですが、どうして単振動の変位は x=Asin(ωt+Φ)という式が導き出されるのでしょうか?具体的に、Φとはどういうものですか? よろしくお願いします。
- ベストアンサー
- 物理学
- バネの単振動について
はじめまして。 もしよろしければ回答方法やどんな些細なきっかけでも助かるのでよろしくお願いします。 壁|~~~~○~~~~|壁 バネ 粒子 バネ 質量mの粒子の左右にバネ定数Kのバネを連結しており、それぞれのバネの一端を壁に固定しています。 2つの壁間の距離はLである。 必要ならばバネの自然長aを用いてよい。重力は考えなくてよい。 (1)今右側の壁の位置がバネの方向に、振幅E、各周波数ωの余弦関数に従って単振動し始めた。 粒子の運動方程式を示せ。 ただし、粒子の座標xは左壁から測るものとする。 (2)次に得られた方程式を元のつりあいの位置x=L/2からの変位uに関する方程式に書き直してから、定常状態における粒子の運動状態をもとめよ。 すなわち、粒子の位置を時間の関数として示せ。 という課題が学校の講義で課されました。 私が考えたのは、壁の単振動が x=Ecos(ωt+φ) としてtで2階微分して壁の加速度を出しました。 しかしこの先から分らなくなりました。 壁が動くという問いは初めてなので、混乱しています。 皆さんお忙しいとは思いますが何卒よろしくお願いします。
- ベストアンサー
- 物理学
- 物理 単振動
ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。
- 締切済み
- 物理学
質問者からのお礼
なるほど!凄い! このようにして、単振動するということが分かるのですね。 単振動の重要性も分かりました。 丁寧な回答をしてくださり、本当にありがとうございました。