- ベストアンサー
- すぐに回答を!
バネの単振動について
はじめまして。 もしよろしければ回答方法やどんな些細なきっかけでも助かるのでよろしくお願いします。 壁|~~~~○~~~~|壁 バネ 粒子 バネ 質量mの粒子の左右にバネ定数Kのバネを連結しており、それぞれのバネの一端を壁に固定しています。 2つの壁間の距離はLである。 必要ならばバネの自然長aを用いてよい。重力は考えなくてよい。 (1)今右側の壁の位置がバネの方向に、振幅E、各周波数ωの余弦関数に従って単振動し始めた。 粒子の運動方程式を示せ。 ただし、粒子の座標xは左壁から測るものとする。 (2)次に得られた方程式を元のつりあいの位置x=L/2からの変位uに関する方程式に書き直してから、定常状態における粒子の運動状態をもとめよ。 すなわち、粒子の位置を時間の関数として示せ。 という課題が学校の講義で課されました。 私が考えたのは、壁の単振動が x=Ecos(ωt+φ) としてtで2階微分して壁の加速度を出しました。 しかしこの先から分らなくなりました。 壁が動くという問いは初めてなので、混乱しています。 皆さんお忙しいとは思いますが何卒よろしくお願いします。
- gin0417
- お礼率50% (2/4)
- 物理学
- 回答数2
- ありがとう数2
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- tomoki356
- ベストアンサー率25% (8/31)
解析力学でいいですよね? 全ラグランジアンには壁の座標L(t)=Ecos(ωt)が入ってきますから、L(x,xdot, L(t))と書けて、ラグランジュ方程式を立てればそれでいいですね。 バネの固有振動数Ωと壁の振動数ωの差によって振幅が増大したり発散したりする、いわゆる強制振動の問題ですから、「強制振動」をキーワードにして調べると、どんな本でも見つかりますよ。
その他の回答 (1)
- 回答No.1
- ryn
- ベストアンサー率42% (156/364)
> 私が考えたのは、壁の単振動が > x=Ecos(ωt+φ) 粒子の座標が左壁から測るとしてあるので, X = L + Ecos(ωt+φ) の方が都合が良さそうです. あと,わざわざ余弦と言っているので 初期位相φは 0 でよいのではないでしょうか? このように時刻tでの壁の位置を表すことができれば, そのときの粒子の位置が(tの関数として)求まるので 運動方程式を導くことが出来ます.
質問者からのお礼
ありがとうございます。 初期位相は0で良いのかと迷っていたので助かりました。
関連するQ&A
- 2本ばねをつなげた振動の周期
大学物理の問題です。 質量mの物体と、自然長l,ばね定数kの2本のばねを図のように連結する。 物体をつり合いの位置からxずらし、手を離した。 この時の運動方程式と、振動の周期を求めよ。 壁|―www―●―www―|壁 という問題なのですが、運動方程式がm・(d^^2)x/dt^^2=-2kx になると思うのですが、周期Tをどう算出すれば良いのかで詰まっています。 特性方程式を解く必要があるのでしょうか? よろしくお願いします。
- ベストアンサー
- 物理学
- ばねのもつエネルギーについて
質量mの物体がばね定数kのばねでつり下げられている。1.物体をつるさないときのばねの長さをyとすると、物体をつるしたときのつりあいの位置でのばねの長さLを求めよ。2.また、質量mの物体をつるしたときのつりあいの位置を原点とし鉛直下向きにx軸をとる。ばねをつりあいの位置から鉛直下向きにx=Lだけ下げ話したときの物体の運動方程式を求め、3.物体の運動が単振動になることを示し振動の周期Tを求めよ。 この問題で1はmg=-k(L-y)で、L=にすればいいのでしょうか。2は運動方程式をどこまで求めればいいのかわかりません。3.は証明の仕方がよくわからないです。
- 締切済み
- 物理学
- 物理のバネの単振動です。
物理の質問です! できなかったので解説してくれると助かります(;_;) 軽いつる巻ばねの一端に天井に取り付け、他端に質量mの小球を取り付けたところ、ばねは自然長の長さからLだけ伸びてつりあった。 さらに、小球をつりあいの位置から下方にAだけ引き下げて静かに手しを放したところ、小球の運動は単振動となった。手を放した瞬間を時間tの原点とする。重力による位置エネルギーおよびばねの弾性力による位置エネルギーの基準をつりあいの位置に取ることにすれば、運動している小球がつりあいの位置より下方にあるとき、 (1)小球の重力による位置エネルギーは重力加速度の大きさgとして表わせ (2)その時のっバネの弾性力による位置エネルギーと小球の運動エネルギーをそれぞれ表わせ (3)(1)と(2)の和がこのバネ振り子の力学的エネルギーでありxとなって一定に保たれる。xはなにか? よろしくお願いします。
- ベストアンサー
- 物理学
- バネの鉛直における単振動
鉛直につるしたバネの単振動において、つりあいの位置からの変位とすれば重力を考えずにすむことはよく知られていますが、自然長から考えてつりあいの位置に行くまでの物体の変位を時間tを使った形で知りたい場合はどう考えればよいのでしょうか。m*(d^2x/dt^2)=m*g-k*xの式をxについて解き、tで表すことができません。数学の問題なのかも知れませんが、お答え頂ければ幸いです。
- ベストアンサー
- 物理学
- 物理 単振動
ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。
- 締切済み
- 物理学
- 二つのバネで引っ張られた物体は単振動する?
なめらかな水平面上で、質量mの物体を 自然長l、ばね定数Kの二つのバネで2dだけ 離れた二点ABの中央に取り付けます。 この物体を図の方向(ABの中心から、線分ABと垂直な方向)に xだけ変位させて、手を離したとき、この物体は単振動を するのでしょうか? 単振動の条件というものを探してみたところ、 xに比例した、振動の中心向きの力がかかると単振動になると あったのですが、この場合は計算してみると、2つのバネから 受ける振動の中心向きの力は F=-2K((x^2+d^2)-l)*x/(x^2+d^2)^(1/2) と、計算が間違えていなければなると思うのですが、 これは単振動しているといえるのでしょうか?
- ベストアンサー
- 物理学
- 単振動の運動方程式 Scilabについて
摩擦のない床の上にある物体がばねで壁につながれているとします。このとき物体に働く力はばねの弾性力だけということになります。 単振動の運動方程式について考えています。 これについて、以下のようにScilabを用いて考えます。 いかのScilabでの考察が分からなくて困っています。 // 重りの質量と、ばねのばね定数、最初に引っ張る長さ m = 1; k = 1; L = 1; // 初期値 x0 = [L, 0]' ; // [ ]' は転置 t0 = 0; // 連立微分方程式の係数行列 w = k/m; M = [ [0 1] ; [-w 0] ] ; // 導関数の定義 deff("xdot = df(t,x)", "xdot=M*x"); // x=[x1, x2]'となっている // 数値解の計算 t = t0: 0.01: 5; // t0-5秒までを0.01区切りで y = ode(x0, t0, t, df); // yも行列なので、物体の位置は1行目の要素をとればよい plot2d(t, y(1,:), 5); // 5 は色を指定する数 xgrid(2); 以上がScilabでの考察なのですが、「初期値」とは何なのでしょうか?? 「連立微分方程式」はどの関係を式であらわしているのでしょうか?? 「導関数」はどんな式ですか??読み取れません…また、どのようにその式が導かれるのかも知りたいです。(これが一番知りたいです!!) 回答よろしくお願いします。
- ベストアンサー
- 物理学
質問者からのお礼
強制振動ですね。 早速調べてみます。 ありがとうございました。