• ベストアンサー
  • 困ってます

2本ばねをつなげた振動の周期

大学物理の問題です。 質量mの物体と、自然長l,ばね定数kの2本のばねを図のように連結する。 物体をつり合いの位置からxずらし、手を離した。 この時の運動方程式と、振動の周期を求めよ。 壁|―www―●―www―|壁 という問題なのですが、運動方程式がm・(d^^2)x/dt^^2=-2kx になると思うのですが、周期Tをどう算出すれば良いのかで詰まっています。 特性方程式を解く必要があるのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1427
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • BookerL
  • ベストアンサー率52% (599/1132)

 1本のばねのときと同じですよ。 m・(d^2)x/dt^2=-kx から T=2π√(m/k) は大丈夫なんですね?  2本のばねの m・(d^2)x/dt^2=-2kx は、2k が弾性定数になっているだけです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど、深く考える必要はなかったんですね(^^; どうもありがとうございました!m(_ _)m

関連するQ&A

  • ばねの両端に違う質量をつるした単振動

    質量m ,M の物体を ばね定数kのばねの両端にそれぞれつけた。 この時の運動方程式を表せMの位置をX、mの位置をxとする とかいてありました。 解答がいきなり それぞれの運動方程式から mM(X・・ - x・・) = -k(m+M)(X-x-l) となっていました。 これを自分で求めたくて考えました。 mは mx・・ = k(X-x-l)  ・・は二回微分 Mは MX・・= -k(X-x-l) と運動方程式を立ててみましたがあってますか。 lはみずらいですが1じゃなくて自然長のエルです。 もしもこの方程式があってるなら答えをこの式からどうやってつなげばいいのか教えてくれませんか。

  • 鉛直ばね振り子の減衰振動の運動方程式について

    摩擦のある水平面でばね振り子減衰振動の運動方程式は m(d^2x/dt^2)=-kx-α(dx/dt) kはばね定数 で与えられると思いますが、鉛直ばね振り子の場合、重力のmgは運動方程式に加えなくてもよいのでしょうか? それとも 高校のころ、単振動の問題を解くとき、鉛直ばね振り子の場合はx=lを釣り合い位置としてkl=mg k=mg/l がこの場合のkであって、ばね定数とは違う値だ、というようなことを習った記憶があるのですが、この場合のkもそれでしょうか?

  • 高校物理、2本のばねに繋がれた物体の運動

    滑らかな水平面上で質量mの物体にばね定数kのばねをつけ、どちらのばねも自然長になるようにして両端を壁に固定した。(物体がばねに挟まれている)物体を右にdだけずらして静かに放した時の振動の周期と、振動の中心を通るときの速さを求めよ。 (解答) 右向きを正とする。右にxだけ変位したときの加速度をaとすると、ma=-2kx k>0より、この運動は単振動である。 ここまで出来たのですが、続きがわかりません。教えてください。

  • 2つのばねの弾性エネルギー

    物理のばねの問題で分からないところがあったので質問させてください。 僕は2ヶ月前まで物理はほとんど無勉状態だったんですが、微積を使って物理を教えることで有名な苑田さんという方の、ハイレベル物理という講座を東進で取ることにより、少しずつ物理が得意になっていきました。 初学だったのでついていくのが大変でしたが、何度も復習を繰り返すことにより、 なかなか難度の高い問題も解けるようになりました。 しかし、先ほどばねの弾性エネルギーに関する初歩的な問題でつまづいてしまいました。 問題は、 「自然長が同じで、ともにばね定数kの軽いばねSを2つ用意する。このばねを水平でなめらかな床の上に置かれた質量mの物体Pにつなぐ場合の物体Pの運動について考える。なお、以下では、ばねの伸び縮みの方向、および物体Pの運動方向は水平であるとする。 まず、図1のように、2つのSを直列につなぎ、床の左端の鉛直な壁に左側のSの左端を、右側のSの右端にPをつなぎ、2つのSの自然長からの縮みがいずれもx(>0)の状態にして静止させる。この状態からPを静かに放す。 (1) Pを放す直前に、Pに加えている水平方向の外力の大きさを求めよ。 (2) Pを放した後、2つのSがともに自然長になる瞬間のPの速さを求めよ。 」 という問題です。 図1を模式的に表すと、|~~□ といった感じです。 (1)では、Pの水平方向のつりあいの式が、外力をFとすると0=F-kxとなり、F=kxと答えることができたのですが、 (2)では、Pの速度をv,加速度をaとすると、運動方程式はma=-kxとなるので、 これの両辺にvをかけて、積分したmv^2/2+1/2kx^2が一定のエネルギー保存則を使うと、自然長での速さをVとしたとき、 mV^2/2+0=0+kx^2/2 よって、V=x√(k/m) これで合っていると思ったのですが、解答を見たところ間違っていました。 解答では、「2つのSの縮みがいずれもxのとき、2つのSにはいずれも、kx^2/2で表される弾性エネルギーが蓄えられている。よって、2つのSがともに自然長になる瞬間のPの速さをVとすると、力学的エネルギー保存則より、 mV^2/2=m/2・0+kx^2/2+kx^2/2 ∴V=x√(2k/m)」 となっていました。 エネルギー保存は運動方程式から導けると習ったのですが、先ほどの僕の考え方はなぜ間違っていたのでしょうか? 運動方程式の立て方を間違えたのでしょうか? それとも、2つのばねの場合は事情が異なるのでしょうか? どなたかよろしければ教えてください。

  • ばねのもつエネルギーについて

    質量mの物体がばね定数kのばねでつり下げられている。1.物体をつるさないときのばねの長さをyとすると、物体をつるしたときのつりあいの位置でのばねの長さLを求めよ。2.また、質量mの物体をつるしたときのつりあいの位置を原点とし鉛直下向きにx軸をとる。ばねをつりあいの位置から鉛直下向きにx=Lだけ下げ話したときの物体の運動方程式を求め、3.物体の運動が単振動になることを示し振動の周期Tを求めよ。 この問題で1はmg=-k(L-y)で、L=にすればいいのでしょうか。2は運動方程式をどこまで求めればいいのかわかりません。3.は証明の仕方がよくわからないです。              

  • 単振動(バネ)

    鉛直上向きにy軸をとり、重力加速度の大きさをgとする。ばね定数kのばねの上端を固定し、下端に質量mの物体をつける。ばねが自然長であるときの物体の位置をy=0とする。ばねの質量、空気抵抗は無視できる。物体は鉛直方向のみ運動する。 1、物体の運動方程式を求めよ 2、つりあいの位置y_eを求めよ 3、つりあいの位置からの変位をy_2(t) = y(t) - y_eとする。y_2に関する運動方程式を求めよ 4、運動方程式を解いて、位置y(t)と、v(t) = y '(t)の一般解を求めよ 5、時刻t= 0にy = y_0 の位置で静かに物体を放した(v (0) = 0 )とする。その後の運動y(t),v(t)を求めよ y_eはyの右下に小さいeがあるという意味 よろしくお願いします

  • ばねに関する問題です

    ばね定数k、自然長lのばねの左端を固定し、右端に質量mの物体をつける。床に動摩擦係数μ'、静止摩擦係数μがあるときを考える。つりあいの位置(x=0)から長さlだけばねの伸びる方向に移動させて放したとする。(ただしlはμによる静止摩擦力よりも大きな力を発生させるだけの長さとする)重力加速度をgとして運動方程式を示せ。また、ばねが最も縮む時刻t(ばねをlだけ伸ばして放した時間をt=0)ならびに、そのときのxをそれぞれ求めよ。 運動方程式をたてるのに、物体の動く向きが変わったら摩擦力の向きも変わるわけですが、どう書けばいいのかわかりません。ご教授お願いします。

  • ばねに関して

    ばね定数k、自然長がlのばねの一端を原点に固定し、他端に質量mの質点を定め比例定数bの抵抗(速度に比例)があるときの運動方程式は・・・ F=kl-b(dx/dt)なのでしょうか??

  • 運動方程式が立てられない(ばねの単振動)

    添付した問図の問題で、運動方程式が立てられなくて困ってます! 問題⇒自然長l1、ばね定数k1のばねと自然長l2、バネ定数k2のばねの間に質量mのおもりをつけてなめらかな面に置き、両方のばねの他端を自然等の位置で固定した。運動方程式を求めよ。 ちなみに教科書の答えは、 m[xの二回微分] = -k1(x-l1) + k2(l1+l2-x-l2) が正しい答えのようです。すみませんが[]の中は微分演算子d/dxを使って読みかえてください。 特に第二項がわけわからんです。なぜこういう式になるのか、教えていただきたいです!ちなみにフックの法則の式、微分を用いた運動方程式の基本は知っているつもりです。 よろしくお願いしますm(__)m

  • ばねの運動

    大学で基礎力学を履修しているものです。 今、重心のところを習っているんですが、次の問題がわかりません。 「自然長l、ばね定数kのばねの下端に質量m1の物体A、上端に質量m2の物体Bをとりつける。物体Bを支えた状態から静かに離して自由落下させたときの運動を考える。鉛直下向きにZ軸をとり、物体A,BのZ座標をそれぞれz1,z2とする。時刻T=0における物体Bの位置を原点とする。重力加速度の大きさをgとして次の問いに答えよ。 (1)T=0における物体の位置を求めよ (2)物体A,Bの運動方程式をそれぞれ書き下せ (3)重心座標の運動方程式を求め、これをといて重心座標を時刻Tの関数としてあらわせ (4)相対座標の運動方程式を求め、これをといて相対座標の運動方程式を時刻Tの関数として表せ という問題です。 (1)はわかるんですが、(2)、(3)、(4)がわからないです。 (2)は、考えてみたところ、m1a=m1-k(l-z1) m2a=(m1+m2)gーk(l-z1)となりました(a=d^2x/dt^2)