- 締切済み
- すぐに回答を!
統計学の標本についてです
下記の問いが分からずに困っています。 手計算でも良いですが、可能ならばExcelでの求め方も教えて頂けると幸いです。 1.平均100、分散1000の正規分布に従う母集団から10個の無作為標本を抽出する。 (1)標本平均の分布は? (2)標本平均値が110を越える確立はいくつか? 2.母比率が0.3である場合、その母集団からの100個の無作為標本に基づく標本比率が0.4を上回る確立はどの程度か? (1)標本比率の分布は? (2)その分布で0.4以上の値を得る確立は? よろしくお願いいたしします。
- kumachimu
- お礼率0% (0/1)
- 回答数1
- 閲覧数257
- ありがとう数0
みんなの回答
- 回答No.1
- ramayana
- ベストアンサー率75% (215/285)
母集団サイズが書いてないので、無限母集団を想定します。 1の(1) 平均100、分散1000/10=100の正規分布 1の(2) 0.158655 Excelでは、「=1-NORM.DIST(110,100,100^0.5,TRUE)」で計算。 2 0.012498 Excelでは、「=1-BINOM.DIST(40,100,0.3,TRUE)」で計算。 2の(1) 標本比率×100が二項分布B(100,0.3)に従う 近似的に、平均0.3、分散0.3(1-0.3)/100=0.0021の正規分布に従う。 2の(2) 0.020989 Excelでは、「=1-BINOM.DIST(39,100,0.3,TRUE)」で計算。 正規分布による近似値は0.014548 Excelでは、「=1-NORM.DIST(0.4,0.3,0.0021^0.5,TRUE)」で計算。
関連するQ&A
- χ^2分布と標本の関係
命題:正規分布N(μ,σ^2)に従う正規母集団から,大きさnの標本X_1,X_2,…,X_nを無作為抽出したとき, Z={(X_1-μ)^2+(X_2-μ)^2+…+(X_n-μ)^2}/σ^2 は自由度nのχ^2分布に従う. というのは理論的に数式から導かれたものなので,納得できました. ところが, 命題:正規分布N(μ,σ^2)に従う正規母集団から,大きさnの標本X_1,X_2,…,X_nを無作為抽出し, 標本平均X=(X_1+X_2+…+X_n)/n を作ると, Z={(X_1-X)^2+(X_2-X)^2+…+(X_n-X)^2}/σ^2 は自由度n-1のχ^2分布に従う. が成り立つ理由が分かりません.数式を用いて理論的に教えて下さい.
- ベストアンサー
- 数学・算数
- PERT と中心極限定理 2
中心極限定理は、次のような定理だと思います。 平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めることを繰り返すと、母集団がどのような分布を示す集団であるかに拘わらず、nが充分大きいとき、mの分布は平均μ、分散σ2/nの正規分布で近似される。 次に、PERTにおいて、n個の作業から成るプロジェクトの全体工程Tを求める方法は、一般に次のように説明されています。 作業iの所用時間がベータ分布に従うと仮定すると、その期待値ei、楽観値oi、最可能値mi、悲観値pi、分散σi2の間には次の関係がある。 ei=(oi+4mi+pi)÷6 (式-1) σi2=(pi-oi)2÷36 (式-2) 一般に平均と分散については加法定理が成り立つので、クリティカルパス上のn個の作業の総所要時間(n個の作業の所要時間の合計)Tの期待値eと分散σ2は次のように表される。 e=Σei (式-3) σ2=Σσi2 (式-4) 中心極限定理により、Tは期待値e、分散σ2の正規分布で近似されるので、今、e=20、σ2=25であるとすると、95%の確率でTが完了する工期は、標準正規分布表の95%点=1.960から、20-1.960×5≦T≦20+1.960×5となる。 それで、次の(1)、(2)が分かりません。 (1)中心極限定理は、「平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めること」から始まる定理なのに、上記Tを求めた過程には、「平均μ、分散σ2の母集団」も「n個の標本の抽出」も「その平均値m」も、一切何もありません。母集団、抽出、平均値にあたるものは、上記Tを求めた過程のどの値または計算なのでしょうか。 (2)「中心極限定理により、Tは期待値e、分散σ2の正規分布」とありますが、いったいどう考えればTを正規分布であるとみなせるのでしょうか。
- ベストアンサー
- 数学・算数
- 正規母集団でないときの標本平均と標本分散の独立性
こんにちは。 正規母集団であるとき、標本平均と標本分散の分布が独立であることは、直交変換によって証明することができますが、 非正規母集団であるときは、標本平均と標本分散の独立性は必ずしも成り立たないということでよろしいでしょうか。 また、正規分布以外の分布で、標本平均と標本分散が独立であるような母集団分布をご存知であれば教えて頂きたいのですが。 よろしくお願い致します。
- ベストアンサー
- 数学・算数