不等式の証明についての方法

このQ&Aのポイント
  • 不等式の証明について、数学的帰納法ではなく、新たな方法を考えた。
  • この方法では、y=f(x)=x^kと(xa,f(xa))についての接線の方程式を応用した。
  • 証明方法は模範解答には載っていないが、独自で思いついて示した。
回答を見る
  • ベストアンサー

以下の不等式の証明を少し頭使いながらやってみました。

以下の不等式の証明を少し頭使いながらやってみました。 n,kを正の整数、x1,x2,・・・・,xnを正の実数とする。このとき  x1^k+x2^k+・・・・+xn^k≧((x1+・・・+xn)^k)/n^(k-1) ・・・・・(#) が成立することを示せ。 (説明)普通は数学的帰納法で示す(模範回答で確認済み)が、ここでは少し見方を変えて示す。 まずk=1のとき (#)の右辺,左辺ともにx1+・・・・+xnで等号成立する。 以降k≧2とする。 まずx1=・・・・・=xn=aのとき (#)の右辺,左辺ともにna^kで等号成立する。 次に0<x1<x2≦x3≦・・・・・≦xnとする。 (#)の両辺に1/nをかけて   (x1^k+x2^k+・・・・+xn^k)/n≧((x1+・・・+xn)/n)^k ・・・・・(##) を示す。 ここでx1,・・・,xnの平均xa=(x1+・・・+xn)/nとし、区間[x1,xn]内で任意にx2,x3,・・・ ・,x(n-1)を(x1,xnを先に定めて)プロットする。そして f(x)=x^k (k≧2)について考える。またx1<xa≦xnである。 g(x)を(xa,f(xa))についての接線の方程式とすれば f(xa)=(g(x1)+g(x2)+・・・・・+g(xn))/n である。 さらにf(x)は区間[x1,xn]において下に凸だから f(x1)>g(x1),f(x2)≧g(x2),・・・,f(xn)≧g(xn) が成り立つ。 したがって (f(x1)+・・・・+f(xn))/n >(g(x1)+g(x2)+・・・・・+g(xn))/n=f(xa) となる。 よってxa=(x1+・・・+xn)/n ,f(x)=x^k から (##)が言えて、(#)が以上から成り立つことが言えた。 模範解答にもこの方法は載っておらず、独自で思いついて示しました。この証明方法でも良いですか? ここのポイントはy=f(x)=x^kと(xa,f(xa))についての接線の方程式を考えればうまく応用できるというところです。問題は間違っていないかどうかですが自分でも面白く感動しました。

noname#121794
noname#121794

質問者が選んだベストアンサー

  • ベストアンサー
  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

証明の方針自体はOKです。 マルをもらえるかどうかですが、ちょっと厳密性が欠けている感はなきにしもあらずですが、 まあ、大学入試ならマルをもらえるのではないでしょうか。 >ここのポイントはy=f(x)=x^kと(xa,f(xa))についての接線の方程式を考えればうまく応用できるというところです。 >問題は間違っていないかどうかですが自分でも面白く感動しました。 この証明を自力で(凸関数についての前提知識なしに)思いついたのなら、なかなかのセンスですね。 実は、あなたの証明のやり方は、凸関数の性質(イェンゼンの不等式)という有名な不等式の証明そのものです。 googleやyahooで、 「凸関数」とか「イェンゼンの不等式」とか検索すると、いろいろなサイトが見つかるでしょう。 質問の不等式は、イェンゼンの不等式で、f(x)=x^k としたものです。 http://ja.wikipedia.org/wiki/%E3%82%A4%E3%82%A7%E3%83%B3%E3%82%BC%E3%83%B3%E3%81%AE%E4%B8%8D%E7%AD%89%E5%BC%8F

noname#121794
質問者

お礼

ありがとうございます。これも実は数学検定1級の問題でまずは自力で解こうということで思考を働かせながらやってみました。イェンゼンの不等式を知らないで使ってみたので面白く実感した。 でも実際に乗ってあるということは実はよく使われているかもしれない。 まあ今後ともぜひ頑張ります。

関連するQ&A

  • 不等式の証明

    n を2 以上の自然数とするとき、次の不等式を証明せよ。 ( 1 / 1^2 ) + ( 1 / 2^2 ) + ( 1 / 3^2 ) + ・・・・ + ( 1 / n^2 ) < 2 - ( 1 / n ) ( I ) n = 2 のとき ( 左辺 ) = ( 1 / 1^2 ) + ( 1 / 2^2 ) = 1 + ( 1 / 4 ) = 5 / 4 ( 右辺 ) = 2 - ( 1 / 2 ) = 3 / 2 = 6 / 4 ∴ ( 左辺 ) < ( 右辺 ) ( II ) n = k ( k ≧ 2 ) のとき成立を仮定 ( 1 / 1^2 ) + ( 1 / 2^2 ) + ・・・・ + ( 1 / k^2 ) < 2 - ( 1 / k ) 両辺に 1 / ( k + 1 )^2 を加えて ( 1 / 1^2 ) + ( 1 / 2^2 ) + ・・・・ + ( 1 / k^2 )+ { 1 / ( k + 1 )^2 } < 2 - ( 1 / k ) + 1 / ( k + 1 )^2 この後どうやって証明するかわかりません。教えてください、お願いします。

  • 等式証明(シグマ記号入り)

    (1)nを自然数とするとき、次の等式が成り立つことを示せ x Σ[k=1,n]k(1+x)^(k-1)+Σ[k=1,n+1](1+x)^(k-1)=(n+1)(1+x)^n この問題なのですが、左辺を計算しても右辺に持っていくことができませんでした。(1+x)^(k-1)というのが左辺の2つの項にあるのですがΣがあるので因数分解もできなく困っています。この共通している部分を生かせるのでしょうか? それとも左辺を計算させて右辺に一致させるのではなく数学的帰納法を使うのでしょうか? 回答宜しくお願いします

  • 不等式の証明

    任意の実数xについて1+kx^2≦cosxが成り立つような定数kの範囲を求めよ。 という問題なんですが、グラフを書いて考えると【0<x≦πの範囲で考えれば十分】だと分かります。(x=0の場合に等号が成り立つのは明らかです)ただこれを記述で書くときに採点者に対してどのように説明すればよいのか迷います。どこまでが自明と言っていいのか分かりません。もちろんf(x)=(右辺)-(左辺)として、これを微分して、場合分けして示すことも出来るのですが、あくまでk≦cosx-1/x^2として二つのグラフの上下関係で示したいと思う場合についてです。 【 】の部分の記述の仕方についてアドバイス頂けたらと思います。

  • カーティスの定理

    お願いです。カーティスの定理がどうしても証明できません。おそらく数学的帰納法で証明するのでしょうが、見通しがつきません。n=kの時成立すると仮定した時、n=k+1をどのように示せばよいかを教えてください。(できれば高校数学の範囲で) ここでいうカーティスの定理とは、 「1/x1 + 1/x2 + 1/x3 + … + 1/xn <1 (但し、x1,x2,x3,…,xn(nは正の整数)は正の整数) を満たす左辺の最大値を与えるx1~xnは、 x1=2 ,x(n+1)=Π(k=1~n)xk +1」 というやつです。

  • 「e」が絡んだ不等式証明

    「自然数nについて、次の不等式が成り立つことを求めよ。    n・log(n)-n+1 ≦ log(n!) ≦ (n+1)log(n+1)-n  」 という問題で、最初は素直に左辺-右辺≧0を使って示しました。 その後、別解として数学的帰納法を用いた証明に挑みました。 n=1のときは楽勝ですが、n=kで成り立つことを仮定した後の「n=k+1」のときに、式変形でつまずきました。今回の質問は、その最後の大小関係の評価についてです。(以下、式はn=k+1のときのもの) log{(k+1)!}-(k+1)log(k+1)+(k+1)-1 =log(k+1)+log(k!)-(k+1)log(k+1)+k ≧k・logk-k+1-k・log(k+1)+k =1-log(1+1/k)^k ・・・・・・・・・・・・(1) (1)をみた時、「あ、これってeの定義式に似てるな」と思い、もしかして (1)≧1-log(e)=0 ・・・・・・・・・・・・・(2) でも言えるのかと思ったのですが、 疑問I: だからといって果たして(2)で等号が言えるのか? 疑問II:そもそも、lim[x→∞](1+1/x)^x=e は、eより大きい数からeに近付くのか?eより小さい数からeに近付くのか?そしてlim[x→-∞](1+1/x)^x=e では? 上の疑問について、答が出せる方、宜しくお願いします。

  • log が入った不等式の証明

     log( Σ(xi yi) ) ≧ Σ( xi log(yi) ) (i = 1, 2, ..., n、 xi, yi ∈[0, 1] かつ Σxi = 1, Σyi = 1 ) という不等式が成り立ちますが、証明はどうすれば良いのでしょうか? たとえば、「 log(x1 y1 + x2 y2) ≧ x1 log(y1) + x2 log(y2) 」を x1, y1 に、[0,1]の範囲でいろいろな数値を当てはめて電卓で計算すると、確かにかならず正になります。[0,1]を超えると成立しません。 左辺ー右辺 = log(x1 y1 + x2 y2) ー (x1 log(y1) + x2 log(y2)) をやろうとしたのですが、これ以上前に進めないんですよね。特に、i = 1,2, ..., n ですし。 よろしくお願いいたします。

  • 証明の問題 パート2

    1+1/2^2+1/3^2・・・+1/n^2≦2-(1/n) (nは自然数) 数学的帰納法を用いて証明せよ。 途中まで考えてみました。 〔1〕n=1の時    左辺は1 右辺も1 よって成立 〔2〕n=kの時    1+1/2^2+1/3^2・・+1/k^2≦2-(1/k)で成立するとする。 ここからn=k+1の場合を考えればいいんですよね。なんだか混乱して分からなくなりました。簡単かもしれませんが、教えてください。

  • 微積分の証明問題についての質問です。

    微積分の証明問題についての質問です。 xの2乗をx^{2}のように表しています。 f:R^{n} → R , p∈R とする。 fが微分可能のとき、次の(1),(2)が同値であることを示せ。 (1)任意のα>0 と(x1,x2,…,xn)∈R^{n} に対して、 f(αx1,αx2,…,αxn) = α^{p}f(x1,x2,…,xn) …(※) (2)任意の(x1,x2,…,xn)∈R^{n}に対して、 Σ[k=1,n]xk{∂f(x1,x2,…,xn)/∂xk} = pf(x1,x2,…,xn) …(♯) ヒントとして、 ・(1)⇒(2) (※)の両辺をαで微分して、α=1とおく。 ・(2)⇒(1) F(x1,x2,…,xn,α) := α^{-p}f(αx1,αx2,…,αxn) を考えて、 ∂F(x1,x2,…,xn,α)/∂α = 0 を示せ。 が与えられています。アドバイスお願いします。

  • n次元半球面とn次元球体が位相同形であることの証明

    こんにちは。tumftmkといいます。 位相についての質問です。 先日、教科書に次のような記述がありました。 A={(x1,x2,…,xn,xn+1)∈R^(n+1) | xn+1≧0 , (x1)^2+…+(xn)^2+(xn+1)^2=1 }  (n次元上半球面) B={(x1,x2,…,xn)∈R^n | (x1)^2+…+(xn)^2 ≦ 1 } (n次元球体) とする。 このとき、写像 f を f :A→B、(x1,x2,…,xn,xn+1)|→ (x1,x2,…,xn)  (射影) とすると、これは同相写像である。 よってAとBは位相同形である。 このようにありましたので、「fは同相写像」をきちんと証明しようとしました。 fが全単射、fが連続 までは分かりました。 そしてε-δ論法を使ってfの逆写像が連続になることを示そうとしましたが、うまく出来ませんでした。 (直感的には分かるのですが…) fの逆写像を f^(-1) とすると    f^(-1) :B→A 、(x1,x2,…,xn,)|→ (x1,x2,…,xn, [1-{ (x1)^2+…+(xn)^2 }]^(1/2) ) となります。    f^(-1) が連続 ⇔ 各成分が連続  なので、(n+1)成分について考えて、  g :B→R 、(x1,x2,…,xn,)|→ [1-{ (x1)^2+…+(xn)^2 }]^(1/2) の連続性さえ示してしまえば証明が終了する、というところまでは分かりました。 (残りの成分については、射影になっているので連続であることは分かります。) この g についてε-δ論法を使ってみたのですが、どのようにδをとればよいのかが分かりません。 どなたか分かるかたがいましたら解答よろしくお願いします。

  • 数学的帰納法について

    1・3+2・4+3・5+・・・+n(n+2)=(1/6)n(n+1)(2n+7) これがすべての自然数nに対して成り立つことを示したいのですが。 (I)まずn=1 は 左辺=1・3=3 右辺=3 となり等式は成立する。 (II)ここで、n=kのとき等式が成り立つと仮定すると  とかいて、はじめのnにn=kを代入しますよね。 その後、模範解答を見ると「(k+1)(k+3)を加えると・・・」 としているのですが (k+1)(K+3)を加えている理由としては、 n=kを成立すると仮定して、n=k+1が成り立つ⇒n=kも当然なりたつ⇒すべての自然数nについて与式は成り立つ。 というものなんでしょうか? ということは、例えば右辺が 2n(n+1)などとしたら、 はじめにn=1で成り立つことを示した後、 n=kを代入し 2k(k+1)を成り立つと仮定し、 n=k+1で 2(k+1){(k+1)+1}・・・☆ となるようにうまく右辺を変形させてあげて、 nのところにk+1が代入されている形になっているので、n=k+1のときに成り立つことが示せて、だからn=kのときも成り立ち、すべての自然数nに対して等式が成立する。 という風に考えればいいのでしょうか? つまり、右辺が☆の形でn=k+1で元の式のnにk+1を代入した形を示せれば、左辺はともかく右辺だけでn=k+1が成り立つことを示せているんですよね? つまり問題に戻ると、左辺は1・3+2・4・・・・+(k+1)(k+3)= とでも適当に書いておいて実質無視ということでしょうか? 理系の受験生なのですが、帰納法すらまともに書けないのか・・・ と馬鹿にされそうですが・・・。 質問というか確認のようになってしまいましたが、帰納法というのはどういうものなのか?という理解すらままならない状況だったので質問させていただきました。あと5ヶ月でまともな解答がかけるようになるために間に合うかはわかりませんが、地道に努力します。回答よろしくおねがいします。