• ベストアンサー

主応力の求め方について

平面応力において主応力を求める過程の中で分からない式があるので教えて下さい。 σ=1/2*(σx+σy)+1/2*(σx-σy)*cos2φ+τsin2φ dσ/dφ=0を考えると -(σx-σy)sin2φ+2τcos2φ=0 tan2φ=2τ/(σx-σy) ここまでは何とか分かります。 これから cos2φ=(σx-σy)/±√{(σx-σy)^2+4τ^2} sin2φ=2τ/±√{(σx-σy)^2+4τ^2} この上記の2式はどうやって導かれたのでしょうか? 分かりやすく教えて下さい。よろしくお願いします。

  • pam13
  • お礼率22% (42/189)

質問者が選んだベストアンサー

  • ベストアンサー
  • kmb01
  • ベストアンサー率45% (63/138)
回答No.1

(σx-σy)sin2φ+2τcos2φ=0 と、 sin^2+cos^2=1 から求まります。

pam13
質問者

お礼

どうもありがとうございました。

関連するQ&A

  • 主応力の公式の導き方

    土木の応用力学の質問なんですが、誰か詳しい方、教えてください。 互いに垂直に交わる2方向の引張、圧縮、せん断力の項目で、   σn=σx cos^2Φ+σy sin^2Φ+τxy sin2Φ   tan2Φ=2τxy / (σx-σy) という公式がありますが、この2式から主応力を求める公式   σ1,σ2=((σx+σy)/ 2)±√((σx+σy)/ 2)^2+τxy^2 を導くと教科書には書いてあるのですが、どうやるのでしょうか??? 誰か、知っている人教えてください。よろしくお願いします。

  • モールの応力円について教えてください。

    モールの応力円について教えてください。 なんで2θなんですか ? http://solid4.mech.okayama-u.ac.jp/モールの応力円.pdf このURLから モールの応力円の式を使って、 σ=σxを代入すると、τ=±τxy、 σ=σyを代入すると、τ=±τxy、 なのでσxとσyは対称の関係となんとなくわかりました。 そして、x軸との角度を求めるのですが、なぜかいきなり2θって定まってます。なんでですか? モールの応力円の式を導くための垂直応力と剪断応力の2式があります。 垂直応力の式にσ=σx代入してθで微分してみたら、 tan2θ=τxy /(σx -σy)/2 になりました。図と見比べてこれで確かに ?=2θになります。 しかし、剪断応力の式にσ=σx代入してσで微分してみたら、 tan2θ=(σx -σy)/2/τxyになってしまいました、、 なんで?反対こになるの?数字代入した時点でθ微分できないから? だとしたらやっぱり2θっていきなり定まっている理由がわからない、、

  • sin(θ1 + θ2 + θ3)を求める問題

    tanθ1 = 1 , tanθ2 = 1/2 , tanθ3 = 1/3, 0<θi<π/2 (i=1,2,3) とするとき、 sin(θ1 + θ2 + θ3)の値を求めよ という問題で、 答えは1のようです。 sinθ1 = 1/√2 sinθ2 = 2/√5 ・・・ とだしていってみて、 sin(θ1 + θ2 + θ3)=1/√2 + 2/√5 + 3/√10 としましたが1にならず・・・ 甘いということなんでしょうか・・。 過程のアドバイスお願いします・・・ あと先日投稿した問題で、 問題が・・・平面状の点(x.y)が単位¥上を動くとき、15x^2 + 10xy - 9y^2 の最大値と最大値を与える点Pの座標を求めよ。ただし、単位演習とは原点を中心とする半径1の円周のことである。 ・・・で、答えはP(5/√26 ,1/√26)または P(-5/√26 ,-1/√26)のとき最大値16 の回答をしてくださったspringsideさんの回答の中で、 与式が最大になるのは、sin(2θ+α)=1のときで、最大値は13+3=16である。 このとき、2θ+α=π/2なので、θ=(π/4)-(α/2)となり、このθをx=cosθ、y=sinθに代入すれば、x,yの値が判る(sin(α/2),cos(α/2)が必要になるのでちょっと面倒かも。) という最後の「2θ+α=π/2なので、θ=(π/4)-(α/2)となり」がわかりません・・・。最初の過程は問題ないのですが。 あとtake_5さんは別の方法で、 cos2θ=a、sin2θ=bとします。 そうすると、a^2+b^2=1のとき、k=12a+5b+3の最大値を求める問題に帰着します。 これは、ab平面上で直線:k=12a+5b+3が、円:a^2+b^2=1に接するときであることは直ぐ分かるでしょう。 それ以降は、簡単と思います。 ごめんなさい。しばらく数学を離れていたためか正解に近いらしきヒントを与えてもらったにもかかわらずこれも「それ以降は」のあと鉛筆が動きませんでした。助け願います・・・

  • 逆関数の公式を使って導関数を求める

    逆関数の公式を使って下記の6問を解きたいのですけど分かりますでしょうか。途中式よりお願いします。 3つの公式→ (1)(Sin^(-1) x)'=1/√1-x^2 (2)(Cos^(-1)x)'=-1/√1-x^2 (3)(Tan^(-1)x)'=1/1+x^2 (1) y=Tan^1 √x (2) y=Cos^1 x/3 (3) y=Sin^1 (x-1)/√3 (4) y=√x ・Sin^1 x (5) y=(Tan^1 x )^2 (6) y=1/(Sin^1 x)

  • 180°-θの三角比

    こんばんは。 いつもお世話になっています。 よろしくお願いいたします。 教科書に sin(180°-θ)=y=sinθ cos(180°-θ)=-x=-cosθ tan(180°-θ)=y/-x=-y/x=-tanθ という公式が書いてありました。 教科書を何度も読んだのですが、まったく意味がわかりません。。 なぜそれぞれこのような式になるのでしょうか。 解説お願いいたします。 よろしくお願いいたします。

  • 楕円 tanθ パラメータ表示

    三角関数の計算がわかりません。 楕円C x=acosθ y=bsinθ (0≦θ<2π)を tanθを使って、表すとき、2倍角の公式から、sinθ=2sin(θ/2)cos(θ/2) cosθ=cos²(θ/2)-sin²(θ/2)を用いて、 sinθ={2sin(θ/2)cos(θ/2)}/{sin²(θ/2)+cos²(θ/2)}={2tan(θ/2)}/{1+tan²(θ/2)} cosθ={cos²(θ/2)-sin²(θ/2)}/{sin²(θ/2)+cos²(θ/2)}=1-tan²(θ/2)/{1+tan²(θ/2)} と書き直せる そうですが、sinθ={2sin(θ/2)cos(θ/2)}/{sin²(θ/2)+cos²(θ/2)}の分子、分母をcos²(θ/2)で割っても、右辺になりません。cosθもあわせて、詳しい計算過程を教えてください。

  • 三角関数の式の変形をお願いします

    三角関数の式の変形をお願いします ややこしくて、解法が分かりません どうかお知恵をおかし下さい y - sin^3θ = (-tanθ) (x - cos^3θ) の式です 答えはy = -tanθx + sinθになるそうです よろしくお願いいたします

  • ラプラスの方程式球面座標表示

    あるサイトを参考に次の様な流れでラプラスの方程式の球面座標表示を導きたいのですが 途中の式が間違っているのか、最終的な式が導けません。 特に下の3の手順で私の式のやり方が間違っているのかもしれません。 正しいかどうかご指摘くださる方、よろしくお願いします。 >は自分のコメントです。 r=r(x,y,z),θ=θ(x,y,z),φ=φ(x,y,z) x=rsinθcosφ y=rsinθsinφ z=rcosθ まず,これらの式から 1.r^2,tanθ,tanφを計算. > r^2 = x^2 + y^2 + z^2 > tan^2θ = (x^2+y^2)/z^2 > tanφ = y/x 2.1を偏微分することによって∂r/∂x,∂r/∂y,∂r/∂z,∂θ/∂x,∂θ/∂y,∂θ/∂z,∂φ/∂x,∂φ/∂yをすべてx,y,zで表現.あとでこれらの2階偏微分も必要になるが. >∂r/∂x = sinθcosφ, ∂r/∂y = sinθsinφ, ∂r/∂z = cosθ >∂θ/∂x = (cosθcosφ)/r, ∂θ/∂y = (cosθsinφ)/r, ∂θ/∂z = -sinθ/r >∂φ/∂x = -sinφ/(r*sinθ), ∂φ/∂y = cosφ/(r*sinθ), ∂φ/∂z = 0 3.∂/∂x=∂/∂r・∂r/∂x+∂/∂θ・∂θ/∂x+∂/∂φ・∂φ/∂x これをさらに偏微分して∂^2/∂x^2を偏微分の記号で表現. ちょっとしんどいですがガッツ. 同様に∂^2/∂y^2,∂^2/∂z^2も計算. >この∂^2/∂x^2, ∂^2/∂y^2,∂^2/∂z^2は単純に >(∂/∂x)^2=(∂/∂r・∂r/∂x+∂/∂θ・∂θ/∂x+∂/∂φ・∂φ/∂x)^2 >(y, z同様)と計算しては間違いでしょうか? 4.∂^2/∂x^2+∂^2/∂y^2+∂^2/∂z^2を偏微分記号の表示のまままとめる. 5.2で求めたものを代入.すると意外に綺麗にまとめれるものが出てくる. >最終的に出た式 >∂^2/∂r^2+∂^2/(r^2∂θ^2)+∂^2/(r^2*sin^2θ∂φ) >求めたい式は >∂^2/∂r^2+2*∂/(r∂r)+∂^2/(r^2∂θ^2)+∂/(r^2*tanθ∂θ)+∂^2/(r^2*sin^2θ∂φ) >です。 >自分で導いた式と比べると、2*∂/(r∂r)+∂/(r^2*tanθ∂θ)が欠けています。

  • 余弦定理を利用して式変換をする

    余弦定理を利用して、式変換を行いたいのですが、わかりません。 x = l1 * cos q1 + l2 * cos (q1 + q2) y = l1 * sin q1 + l2 * sin (q1 + q2) この2式において、余弦定理を適用して、次式を得たいのです。 q1 = tan^(-1) (y/x) - cos^(-1) ( (x^2 + y^2 + l1^2 - l2^2) / (2 * sqt(x^2 + y^2) * l1) ) q2 = cos^(-1) ( (x^2 + y^2 - l1^2 - l2^2) / (2 * l1 * l2) ) どなたか導出の過程を教えてください><

  • 数学の得意な方、答えを教えてください。

    1、直線x+2y-3=0と直線x-2y+2=0との交点と点(-3,0)を通る直線 2、直線3x+4y-6=0と直線2x-5y+2=0との交点と点(1,2)を通る直線 3、0≦θ≦180°のとき、次の不等式を満たすθの範囲を求めよ。 (1)sinθ>√2/2 (2)cosθ≦1/2 (3)tanθ>1 (4)sinθ<1/2 (5)cosθ>-√3/2 (6)tanθ≦√3 (7)sinθ≧√3/2 (8)cosθ<-1/2 (9)tanθ≦0 (10)√2sinθ-1≦0 (11)cosθ+1≦0 (12)√3tanθ+1≧0 お願いします。