• ベストアンサー
  • すぐに回答を!

∫1/√(x^2+a)dxの求め方

∫1/√(x^2+a)dxの求め方 積分公式の一つに ∫1/√(x^2+a)dx=log{x+√(x^2+a)}+C(Cは積分定数) がありますよね。 これってどのように証明すればよいのですか? x=asinθで置換積分してもうまく解けないのですが…。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数3760
  • ありがとう数8

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • info22_
  • ベストアンサー率67% (2650/3922)

この積分は置換の仕方が決まっています。なので丸覚えしてください。 a>0のときは t=x+√(x^2+a) で置換積分します。 dt=dx(1+x/√(x^2+a))=tdx/√(x^2+a) dx/√(x^2+a)=dt/t I=∫1/√(x^2+a)dx =∫dt/t =log|t|+C =log|x+√(x^2+a)|+C =log(x+√(x^2+a))+C =arcsinh(x/√a)+C

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 これもパターン化されている置換積分なのですね。

関連するQ&A

  • ∫{x/(x+1)}dxの解き方

    とても初歩的なのですが、積分についての質問です。 ∫{x/(x+1)}dxの解き方が分かりません。 以下のように解きました。 ∫{x/(x+1)}dx x+1=tとする x=t-1よりdx=dt よって ∫{x/(x+1)}dx=∫{(t-1)/t}dt =∫(1-1/t)dt =t-log(t)+C (C:積分定数) =(x+1)-log(x+1)+C こうなったのですが、どうやら計算違いのようで、解は「x-log(x+1)+C」となっていました。 解が出なかったわけではなく、最初の時点で「x/(x+1)」を「1-1/(x+1)」と変形したらちゃんと解は出たのですが、上記の解法の間違いが分からず、もやもやしています。 どこが間違っているのでしょうか。 置換積分が使えるのは特定の数式の場合のみなのでしょうか。 積分は不得意なので、見苦しい点あるかと思いますが、ご指摘お願いします。

  • 積分の答えについて

    ∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらの答えでもない可能性もありますが... 回答よろしくお願いします。

  • 原始関数の問題の解き方

    以下のように解いたのですが、解答に自信がありません。 途中の式など、間違っていればご指摘のほどよろしくお願いします。 次の原始関数を求めよ。 (1) ∫(x+1)^5 dx x+1=tとおく。 (dt/dx)=1より、dx=dt よって、∫(x+1)^5 dx=∫t^5 dt =(1/6)t^6+C =(1/6)(x+1)^6+C (Cは積分定数) (2) ∫e^(5x) dx 5x=tとおく (dt/dx)=5より、dx=(dt/5) =∫e^(t)(dt/5)+C =(1/5)e^(5x)+C (Cは積分定数) (3) ∫x/(x^2+1)^2 dx =∫{(x+1)-1}/(x^2+1)^2 dx =(1/2)∫{(2x+2)-2}/(x^2+1)^2 dx =(1/2)∫(x^2+1)'/(x^2+1)^2 dx =(1/2)log|(x^2+1)^2|+C (Cは積分定数) (4) ∫1/√(23-x^2) dx 公式 ∫1/√(a^2-x^2) dx=sin^(-1) x/√a+C (a>0)より =sin^(-1) x/√23 +C (Cは積分定数) ご指導、よろしくお願いします。

その他の回答 (3)

  • 回答No.4
  • alice_44
  • ベストアンサー率44% (2109/4758)

x = (√a)tanθ, -π/2<θ<π/2 なら、うまく行くのでは? これは、被積分関数に √(x^2+1) が入っているときの定石のひとつ。 √(x^2+a) = (√a)√{(tanθ)^2+1} = (√a)/cosθ, dx/dθ = (d/dθ)(√a)tanθ = (√a)/(cosθ)^2 になるので、 ∫1/√(x^2+a)dx = ∫{1/√(x^2+a)}(dx/dθ)dθ = ∫{(cosθ)/(√a)}{(√a)/(cosθ)^2}dθ = ∫(cosθ)/{1 - (sinθ)^2}dθ = ∫1/(1-s^2)ds           ; s = sinθ と置いた = ∫(1/2){1/(1+s) + 1/(1-s)}ds   ; 部分分数分解 = (1/2){log(1+s) - log(1-s)} + A  ; A は積分定数 = log√{(1+s)/(1-s)} + A と積分できる。 (1+s)/(1-s) = (1 + sinθ)/(1 - sinθ) = (1 + sinθ)^2 / { 1 - (sinθ)^2 } = { (1 + sinθ) / cosθ }^2 = { (1/cosθ) + tanθ }^2 = { √(x^2+a) + x }^2 / a を使って、整理すると、 ∫1/√(x^2+a)dx = log{ √(x^2+a) + x } + (A - log√a)。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。

  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

この積分は置換の仕方が決まっています。なので丸覚えしてください。 a>0のときは t=x+√(x^2+a) で置換積分します。 dt=dx(1+x/√(x^2+a))=tdx/√(x^2+a) dx/√(x^2+a)=dt/t I=∫1/√(x^2+a)dx =∫dt/t =log|t|+C =log|x+√(x^2+a)|+C =log(x+√(x^2+a))+C =arcsinh(x/√a)+C

共感・感謝の気持ちを伝えよう!

  • 回答No.1

aは正ですか、負ですか。

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみません。忘れていました。 ご指摘ありがとうございます。 aは正の実数です。

関連するQ&A

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • 積分のある公式について

    ∫1 / (x^2 + y^2) dx = log (x + (x^2 + y^2)^1/2 ) + C [Cは積分定数] という公式がありますが、 ∫1/ (x^2 + y^2 ) dx = (x^2 + y^2)^(1 - 1/2) * x^(1 + 2) /1 + 2 + C = (x^2 + y^2)^1/2 * x^3 / 3 + C [Cは積分定数] はいけないのでしょうか。 理由を詳しく教えていただければうれしいです。

  • 定積分の問題です

    解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数)

  • 積分の回答があっているか教えてください

    以下の計算問題を解いたのですが、 よくわかってないまま解いたところもあり、あっているか自信がありません。 わかる方、ご指南おねがいします。 (1) ∫{1→2}1/(x+1) dx x+1=tとおく。 (dt)/(dx)=1→dx=(dt)/1 x | 1→2 --------- t | 2→3 ∫{2→3}1/t dt= [log |t|]{2→3} F(x)=log|3|-log|2| (2) ∫x^2/(1+x^2) dx 公式 1?(1+x^2) dx=arctan(x)+Cより F(x) = x-arctan(x)+C (Cは積分定数)

  • 微分方程式の途中の変形が分かりません。

    変数分離形の微分方程式 (x^2*y-x^2)dy=(x*y^2+y^2)dx を解くのですが、 ∫(1/y-1/y^2)dy=∫(1/x-1/x^2)dx と変形し、 log|y|+1/y=log|x|-1/x+C (C:積分定数) まで、解きました。 これはy=○○の形にどうやって変形すればよいのでしょう? 何を使うなどのヒントでいいので、よろしくお願いします。

  • 不定積分の計算で出た定数は捨てて良いのでしょうか

     46歳の会社員です。思うところがあって、1 年前から数学を独学で勉強しています。  非常にレベルが低い質問をしているのかもしれませんが、周りに聞ける人がいないのでここに質問をすることにしました。  不定積分の計算で出てきた定数は積分定数と扱って捨ててよいのでしょうか ?  例えば、 ∫(x + 1)^2 dx ((x + 1)の 2乗を積分) を ∫(x^2 + 2 * x + 1) dx に変形すると、 x^3 / 3 + x^2 + x になりますが、 x + 1 = t とおいて ∫t^2 dt に変形すると、 x^3 / 3 + x^2 + x + 1 / 3 となり、定数 1 / 3 が出てきます。  また、 ∫{2 / (2 * x + 2)} dx を ∫{1 / (x + 1)} dx に変形すると、 log|x + 1| になりますが、 2 * x + 2 = t とおいて ∫(2 / t) * (1 / 2) dt に変形すると、 log|2 * x + 2| になります。  これを log|2 * x + 2| = log|(x + 1) * 2| = log|x + 1| + log|2| と変形すると、定数 log|2| が出てきます。  これらの定数は積分定数として扱って捨ててよいのでしょうか ?

  • 高校数学 積分

    ∫-1→1 (x+2)log(x+2)dx という問題で、部分積分法で解くのに、解答はx+2を積分して(x+2)^2としています。確かにこれだと、処理が簡単なのですが、1/2x^2+2xとしても微分するとx+2になるのですが、これで計算すると、(面倒くさいやり方ですが)答えが合いません。積分定数はなんでもよいのではないのでしょうか?わかりにくい説明ですみませんが、どなたかわかる方、お知恵を貸してください。

  • ∫【1→2】{(x^2-x+4)/x(x^3+1)}dx

    ∫【1→2】{(x^2-x+4)/x(x^3+1)}dxという定積分の求め方がわかりません。 私はまず部分分数に分けて、 (x^2-x+4)/x(x^3+1) =4/x-(4x^2-x+1)/(x^3+1)として、 ∫【1→2】{(x^2-x+4)/x(x^3+1)}dx =(16/3)*log2-(8/3)*log3+【1→2】∫(x-1)/(x^3+1)dx というところまで求めたのですが、最後の定積分が求められず、ここで手が止ま ってしまいました。 ちなみに最終的な答えは3*log(4/3)となるそうです。問題集には答えしか書か れてないので困っています(^_^;)

  • 積分問題∫√(x^2+a)dxです。

    ∫√(x^2+a)dxの積分が分かりません。∫1/√(x^2+a)dxは部分積分を用いて、t=x+√(x^2+a)とおいてlog|x+√(x^2+a)|+c で解けましたが、同じようにできるのでしょうか。よろしくお願いします。

  • 微分方程式

    6x-2y-7=(3x-y+4)y' という微分方程式を解いています. 模範解答では, 3x-y+4=uと置くと3-y'=u'であるから 2u-15=u(3-u') すなわち uu'/(u+15)=1 となる.ゆえに, u-15log|u+15=x+C1 (C1は積分定数) u=3x-y+4を代入して, 2x-y-15log|3x-y+19|=C. となっていました.自分は, X=x+α,Y=y+βと置き, y'=(6x-2y-7)/(3x-y+4)=(6X-2Y)/(3X-Y) となるようにα,βを決める. dy/dx=dY/dXであるから dY/dX=(6X-2Y)/(3X-Y)=2 となる ゆえにY=2X+C. X=x+α,Y=y+β を代入して (y+β)=2(x+α)+C. と考えたのですが,どこがおかしいのでしょうか?