• ベストアンサー

複素関数を積分していて困ったことがあったので質問します。

複素関数を積分していて困ったことがあったので質問します。 ∫dz/[(e^z+1)(z-1)^2] を一辺2Rの正方形の周り(中心が原点に存在) で一周積し、Rを無限大にしたときこの積分値が0に(おそらく)なることを示すのですが、 z=R+ iy(z=R-iy) のように x=R と固定した時値が0になるのは理解できるのですが、 z=x+iR(z=x-iR) と y=iR に固定した時0に収束することを示せません。 分母の関数を適当なもので評価するんだと思うんですが、うまくいかなくて・・・ よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

nを任意の自然数 R=2nπ とする D={中心原点一辺2Rの正方形領域} ∂D={±R+iy||y|≦R}∪{x±i2nπ||x|≦R} f(z)=1/[(e^z+1)(z-1)^2] z∈{±R+iy||y|≦R}のとき |(e^z+1)(z-1)^2|≧R-1 |f(z)|≦1/(R-1) z∈{x±i2nπ||x|≦R}のとき |(e^z+1)(z-1)^2| =|(e^{x±i2nπ}+1)(x±iR-1)| =|(e^x+1)(x-1±iR)| ≧R>R-1 |f(z)|≦1/(R-1) |∫_{∂D}f(z)dz|≦|∫_{∂D}dz|/(2nπ-1) lim_{n→∞}∫_{∂D}f(z)dz=0 f(z) は点 z=1 z=i(2k-1)π,(k=±1~±n) で特異点をもち留数 Res(f(z),1)=-e/(e+1)^2 Res(f(z),i(2k-1)π)=1/((2k-1)π)^2 だから ∫_{∂D}f(z)dz=2πi(-e/(e+1)^2+(1/π^2)Σ_{k=-n~n}(1/(2k-1)^2)) 0=lim_{n→∞}∫_{∂D}f(z)dz=2πi(-e/(e+1)^2+(1/π^2)Σ_{k=-∞~∞}(1/(2k-1)^2))

kiryuu006
質問者

お礼

なるほど!たすかりました。ありがとうございます。

その他の回答 (1)

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

nを任意の自然数とする R>(2n-1)π D={中心原点一辺2Rの正方形領域} ∂D={一辺2Rの正方形の周り} f(z)=1/[((e^z)+1)(z-1)^2] は 点 z=1 z=i(2k-1)π,(k=0,±1~±n) で特異点をもち留数 Res(f(z),1)=-e/(e+1)^2 Res(f(z),i(2k-1)π)=1/((2k-1)π)^2 だから ∫_{∂D}f(z)dz=2πi(-e/(e+1)^2+(1/π^2)(1+2Σ_{k=1~n}(1/(2k-1)^2))) lim_{R→∞}∫_{∂D}f(z)dz=2πi(-e/(e+1)^2+(1/π^2)(1+2Σ_{k=1~∞}(1/(2k-1)^2)))

kiryuu006
質問者

補足

すいません。言葉が足りませんでした。 留数定理は分かっているのですが、問題が この積分路で積分することで値がゼロになることを示し、 それを利用して Σ_{k=-∞~∞}(1/i[(2n+1)-1]^2)) の値を求める問題になっているため、質問のところを解く必要がありました。

関連するQ&A

  • 【複素関数】

    複素関数の積分の質問です。 Ir=1/2πi×∫f'(z)/f(z)dz (原点中心,半径rの円Crで積分) について、f(z)=(zのn次多項式)のとき、半径 r を十分大きいものとして Ir(つまりは、関数f'(z)/f(z)の全留数の和)を求めたいのですが この場合、特異点はどのようになるのでしょうか。 f(z)=0とは置いたものの、そのあとの方針が立たず、 うまく求めることができません。 数学のできる方がおられましたら、 ご享受下さい。よろしくお願いします。

  • 複素積分について

    複素積分についてなんですが… ∫cos(z/2)dz 積分経路Cがどんな曲線(anycurve)でもいいので0~π+2iです。 z=x+iy x=t,y=tと置いてやってるのですがうまくいきません。 わかる方教えてください!!

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素関数の1例について質問

    複素関数の1例について質問 f(z)=z^2-3z+2 のとき、その導関数は f’(z)=2z-3     で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) ∫f’(z)dz=∫(2z-3)dz=z^2-3z+C となるので良いと思います。 ここで、z=x+iy と置いて同様のことをすると、 f(z)=(x+iy)^2-3(x+iy)+2 =(x^2-y^2-3x+2)+i(2xy-3y) f’(z)=∂u/∂x+i∂v/∂x     =2x-3+i(2y)     (=2(x+iy)-3=2z-3) で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) 一般に ∫f(z)dz=∫(udx-vdy)+i∫(vdx+udy) なので、 ∫{2x-3+i(2y)}dz =∫(2x-3)dx-∫2ydy+i∫2ydx+i∫(2x-3)dy =x^2-3x-y^2+C+i(2xy)+i(2xy-3y) =(x^2-y^2-3x+C)+i(4xy-3y) となりましたが、 虚数部が(2xy-3y)になっていません。 何故でしょうか? ご教示、よろしくお願いします。

  • 複素積分

    下記の複素積分に関する問題がわかりません。 積分路Cは原点を中心とする半径1の円周上とする。 ∫c(z^2+1)/(-4iz^3+17iz^2-4iz)dz また、複素積分の基礎的な知識を確認するのに何かよいサイトがありましたら教えて頂けませんか。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • リーマン面上の複素積分

    複素関数論の勉強をしているのですが、 リーマン面上の複素積分がよくわかりません。 極座標表示(r,θ)で、 半直線θ=0 に沿った積分と、 半直線θ=2π に沿った積分は 別の値になるのでしょうか? ∫_c f(z) dz = -∫_(-c) f(z) dz という複素積分の性質と矛盾するように思えるのですが。 どなたか教えていただけるとうれしいです。

  • 共役複素関数について

    複素数z=x+iyに共役な複素数がz*=x-iy であるということはわかるのですが、ある複素関数f(z)に共役な複素関数というものがどうゆうものであるかがよくわかりません。教えていただけるとありがたいです。

  • 積分値を複素関数を使って求める

    お世話になります。 【問題】 実変数θに対する下記の積分値を、複素関数を使って求めよ。 ∫[ 0 → 2π ]1 / ( 5 - 3cosθ )^2 dθ 【自分の解答】 オイラーの公式より cosθ = ( exp( iθ) + exp( -iθ ) ) / 2 これを与式に代入して ∫[ 0 → 2π ]1 / ( 5 - 3 ( exp( iθ) + exp( -iθ ) ) / 2 )^2 dθ = (*) ここで z = exp( iθ) + exp( -iθ ) とおくと dθ/ dz = 1 / (dz / dθ) = 1 / iz ∴dθ= ( 1 / iz )dz また θ:0 → 2π z :2 → 2 よって (*) = ∫[2 → 2]1 / ( 5 - 3z / 2 )^2 ( 1 / iz )dz (ここから不明) 【質問】 上記のやり方では積分範囲が2 → 2となり被積分関数がどんなものであろうとその積分値は0になってしまいます。 私の解答は間違っていると思うのですが、何が間違っているのか、どうすれば正しくなるのかがわかりません。 どなたかご教授よろしくお願いします。

  • 複素積分についての質問です

    複素平面において、点√3iを始点とし、点-√3iを終点とする線分をC1とし、 また、{Re(z)≦0,|z|=√3}を満たす半円をC2とした場合(向きは反時計回り)、 (1)∫_{C1}(1/(1+z))dz (2)∫_{C2}(1/(1+z))dz (3)∫_{C1}(zの共役複素数)dz (4)∫_{C2}(zの共役複素数)dz を求めよといった問題について、 (1)∫_{-√3i}^{√3i}(1/(1+z))dz =log(1-√3i)-log(1+√3i) =log((1-√3i)/(1+√3i)) =log((-1-√3i)/2) =log1+iarg(4pi/3)=iarg(4pi/3) (2)∫_{C2-C1}(1/(1+z))dzは留数定理より、 =2pi*Res(1/(1+z),-1)=i2piとなるから、 ∫_{C2}(1/(1+z))dz=i*2pi-iarg(4pi/3) (3)∫_C1(x-iy)d(x+iy) =∫_{0}^{0}xdx-i∫_{√3i}^{√3i}ydy =-i[y^2/2]_{-√3i}^{√3i}=0 (4)∫_{C2-C1}(zの共役複素数)dzはこの領域内に 特異点を含まないから積分値は0になる。 したがって∫_{C2}(zの共役複素数)dz=0 として、求めたのですが、これであってますでしょうか? 一番の疑問点は、(1)と(2)では、経路の違いにより、 積分値が異なっていますが、(3)と(4)では、同じになって しまっていることです。 ご回答よろしくお願い致します。