• ベストアンサー
  • すぐに回答を!

即回答おねがいします!

1から180までの整数のうち、 初項5、公差4の等差数列にあらわれる数の集合をA、 初項1、公差6の等差数列にあらわれる数の集合をBとする。 (1)Aに属するすべての数の和を求めよ。 (2)共通部分A∧Bに属する要素の個数を求めよ。 (3)和集合A∨Bの属する全ての数の和を求めよ。 (1)はΣで考えるのでしょうか?(答えは4004??) (2)(3)はまずどうしたらいいのかもよく分かりません(/_;) なるべく細かく教えてください...

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

初項5、公差4の等差数列は、 An=4n+1 初項1、公差6の等差数列は、 Bn=6n-5 2つの数列の共通部分は、初項13、公差12の等差数列 Cn=12n+1 (1) Σ[n=1・・・44]An (2) Σ[n=1・・・14]Cn (3) n(A∨B)=n(A)+n(B)-n(A∨B)

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2
  • nag0720
  • ベストアンサー率58% (1093/1860)

#1です。 (3)は、n(A∨B)=n(A)+n(B)-n(A∧B) の間違いでした。

共感・感謝の気持ちを伝えよう!

質問者からの補足

回答有難うございます。 CnはAとBを書き出して求めるのですか? あと(2)は個数なので14が答えということですよね?

関連するQ&A

  • 等差数列の和

    1から180までの整数のうち、 初項が5、公差が4の等差数列に現れる数の集合をA, 初項が1、公差が6の等差数列に現れる数の集合をBとする。 (1)Aに属するすべての数の和を求めよ。 (2)共通部分A∩Bに属する要素の個数を求めよ。 (3)和集合A∪Bに属する全ての数の和を求めよ。 解ける方がいらっしゃいましたら、 解説お願いしますm(__)m

  • 大至急高校数学

    高校数学の問題です。 1から180までの整数のうち、初項が5、公差が4の等差数列となる数の集合をA、初項が1、公差が6の等差数列となる数の集合をBとする。 和集合A∪Bに属するすべての数の和を求めよ。 解答 5370 詳しい解説宜しくお願い致します。

  • 数学の問題です

    数がいくつかあるのですがすいません><; 1.初項5 公差2の等差数列に対して、初項から第何項までの我がはじめて777より大きくなるか答えよ 2.初項がaで、公差dが自然数である等差数列anが2つの条件  A: a3+a5+a7=93 B:an>100となる最小のnは15 (1)公差d? (2)初項a? (3)a1+a2+・・・・+an>715となる最小のn? 3. 初項が6で 公差dの等差数列がある。初項から第4項までの輪と初項から第12項までの我が等しいとき、第n項から第n+7項までの和をTnとするとき、|Tn|の最小値とそのときのn? 答え: 1.26 2.(1)d=7 (2)a=3 (3)n=15 3・n=5のとき。最小値0 という答えなのですが。やり方などが全く分からないので・・ 出来れば詳しい解説とともにお願いします・・

  • 等差数列です。

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。上手く書けませんでした御理解いただけたでしょうか。

  • 数列で・・・

    公差が正整数の等差数列があり、そのある項は0で、 初項から第35項までの和は665である。この数列の公差を求めよ。 という問題がありましたが、難しすぎて解けませんでした。 どうかお助けください。よろしくお願いいたします。

  • 等差数列の共通項

    初項4,公差3の等差数列{an}と,初項-2,公差5の等差数列{bn}がある。これらの2つの数列で,最初に現れる共通な数を求めよ。 共通な数をcmとすると、どうやって求めればいいのでしょうか? 不明な点は・・・全体的にわかりません。。

  • 等差数列

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。昨夜投稿しましたがうまく投稿出来たかどうかわからないので再度投稿しました。もし重なっていましたらごめんなさい。よくわからないので。 投稿の注意点も教えていただけたら嬉しいです。

  • 等差数列の基本的な問題

    第7項が29、第10項から第19項までの和が815である等差数列の初項と公差を求めよ 一応答えが出たのですが、その答えだと和が会わないような気がするんです。 初項239 公差-35 連立するときに間違えたと思い何度も確認したのですが、よくわからないのです。 以下の式でいいのでしょうか? a+6d=29 1/2*10*(2a+9d)=815 かなり初歩的な質問と思われますが、宜しくお願いします

  • 【数列】

    初項が5で、公差が7の等差数列{an}と、 初項が6で、公差が4の等差数列{bn}がある。(n=1,2,3、…) (1)ak=b1となる自然数k、lが存在するとき、 lを7で割ったあまりは? (2)数列{an}と{bn}に共通な高を小さい順に並べた数列{cn}の一般項は? (3)数列{cn}で2000以下の項の和Sは? (1)から分かりません… どうとき始めたらよいか、さっぱりです。 解説付きでお願いしたいです!

  • 群数列教えてください

    │1│2、4│3、6、9│4、8、12、16│5、10、15、20、25│・・・ このとき第k群は初項k、公差kの等差数列の初項から第k項までとする。ただしk=1,2,3・・・である。 (1)第50項a〔50〕を求めよ。 (2)初項から第50項までの和を求めよ。 答え(1)50 (2)1305 解き方を教えてください。 解説が詳しいとありがたいです。