• ベストアンサー
  • すぐに回答を!

平面図形

こちらの問題の解き方を教えて下さい><!! 答え通りにならなくて困っています;; =QUESTION= ∠A=90゜である直角三角形ABCの内接円Iがあり、 円と辺BC、CA、ABとの接点をそれぞれD、E、Fとする. BD=4、DC=12であるとき、円の半径を求めよ. =私の解き方= 接点がD、E、Fということから AFA=I=AE、BD=4=FB、DC=12=EC…(1) ⇔AB=(I+4)、AC=(I+12)、BC=16…(1)´ といえる。 よって、三平方の定理より、 (I+4)^2+(I+12)^2=16^2 I^2+8I+16+I^2+24I^2+144=256 2I^2+32I+96=0 I^2+16+48=0 ⇔I=-16±√64/2 ⇔I=-16±8/2 ⇔I=-8±4 ・ ・ ・ このまま解くと、Iがマイナスになってしまいます。 それだけではなく、 正答⇒4√7-8 なのです。。 何度解いても同じ答えになってしまうので、質問しました。 回答の方、宜しくお願いします;; (図は以下の通りです)

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数45
  • ありがとう数8

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

I^2+8I+16+I^2+24I^2+144=256 2I^2+32I+96=0 が惜しい。 I^2+8I+16+I^2+24I^2+144=256 2I^2+32I-96=0 が正解。 あとは、考えたとおり計算しましょう。 #1さんは言っていますが、半径=AE=AFです。 (図を見ると少し変ですが、∠Aが直角じゃないからね。) 内接円の中心をOとすると、 ∠Aが直角。 ∠AEOと∠AFOも直角なので正方形になります。 ※大文字でも「I」は使わない方が良い。 ※数学で「i」は別な意味を持つ。 ※通常通り、変数は「x」とおきましょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

±を間違っていたんですね!! もう1度解いてみたところ、答え通りになりました^^ 確かに“I”(大文字)で解くのは見かけませんね…;; 私も解いていて解きにくかったです。。 円の半径なので、これからは“r”とおいて解くことにします☆ ご回答、ありがとうございました!

その他の回答 (1)

  • 回答No.1

> I^2+8I+16+I^2+24I^2+144=256 > 2I^2+32I+96=0 ここ、式の変形を間違ってるのでは? > Iがマイナスになってしまいます。 > それだけではなく、 > 正答⇒4√7-8 IはAE及びAFの長さですので、内接円の半径を計算するには、もう一手間必要かも。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

式変形が間違っていたのですね;; もう1度解きなおしてみます! ご回答、ありがとうございました^^*

関連するQ&A

  • 【数学A・平面図形】

    「△ABCにおいて、AB=6、BC=7、CA=7である。この三角形に内接する円があり、辺ABと内接円との接点をMとするとき、線分AMの長さを求めよ。」です。 よろしくお願いします。

  • 三角形と内接円の問題

    △ABCとその内接円があり、内接円と辺BC、CA、ABとの接点をそれぞれD、E、Fとする。 (1)AF=x、BD=y、CE=zとする。△ABCの面積Sと内接円の半径rをx、y、zで表せ (2)Iを内接円の中心とする。  P=(AB・BC・CA)/(AI・BI・CI)の最小値を求めよ。 x、y、zを正の数とすると不等式 (x+y+z)/3 ≧ xyzの三乗根 が成り立つことは用いてよい。 という問題に取り組んでいます。 (1)はヘロンの公式を利用して、 S=√(xyz)(x+y+z)、r=√(xyz)/(x+y+z) と一応なりました。 (2)なのですがAI、BI、CIなどをそれぞれ三平方の定理をもちいて出して代入してみると複雑でうまく計算できませんでした。何かいい方法はありませんでしょうか 回答いただけるとありがたいです。 宜しくお願いします

  • 内接円

    辺の長さがそれぞれAB=c、BC=a、CA=bで∠Aが直角である直角三角形ABCの内接円の半径rをa、b、cで表せ 初めから解き方を教えてください

  • 高1数学 平面図形の証明です。

    三角形ABCの内接円の中心をO1、この内接円と辺AB、AC、BCとの接点をそれぞれp1、p2、p3とする。 また、辺ABをBの方向に伸ばした延長線、辺ACをCの方向に伸ばした延長線、および辺BCと接する三角形ABCの傍接円の中心をO2とし、この傍接円と辺ABの延長線、辺ACの延長線、辺BCとの接点をそれぞれq1、q2、q3、とする。 このとき、Bp3+Bq3=Cp3+Cq3であることを示しなさい。 この問題がわかる方、教えてください! 解説が載っていないので困っています。 よろしくお願いしますm(__)m

  • 数A平面図形

    数A平面図形 【問題】 三角形ABCの内接円の半径をr、傍接円の半径をr1、r2、r3とするとき、 1/r=1/r1+1/r2+1/r3が成り立つことを証明せよ 【解答】 三角形ABCの3辺の長さをa,b,cとし、直線ABと内接円およびJ1を中心とする傍接円との接点をS,Tとすると、三角形ASI∽三角形ATJ1より、 r/r1=AS/AT ここで、AS=(b+c-a)/2,AT=(a+b+c)/2であるから、 ・・・・(つづく) AS=(b+c-a)/2はわかるのですが、AT=(a+b+c)/2の作り方がわかりません… 図形だし、説明しづらいかもしれませんが、よかったら教えてください お願いします(> <)

  • 【ベクトルと平面図形】

    AB=9、BC=8、CA=7である△ABCの内接円の 辺BC,CA,ABでの接点をそれぞれD,E,Fとし、内接円の中心をIとする。 (1)四角形AFIE、BDIF、CEIDの面積比は? (2)△ABCの面積は? (3)内接円の半径は? (4)AI→をAB→、AC→で表せ。 問題数が多いのですが… 解ける方いらっしゃいませんか?

  • 図形の問題でどうしても解けません。。。

    問題集に答えが付いているのですが、解説がついていなくて・・・どうしてもわかりませんので質問させていただきました。 【問題】 △ABCの内接円の半径が2、3辺の長さの比が、BC:CA:AB=2:3:4であるとき、BC+CA+ABを求めよ。 【答】 36√15/5 私の解き方。 sinAを求める。またBC=2t、CA=3t、AB=4tとして。 2つの三角形の面積の公式 1/2*r*(BC+CA+AB) 1/2*sinA*CA*AB を使いました。 今、r=2なので代入。 また求めたいBC+CA+AB=Lとすると。 L=1/2*sinA*4t*3t sinA=√15/8 を入れると・・・ 結局、t が消せないので、答えまで導けません。 答えから推測するに、 t^2=48/5 どうやってtを求めたらいいのかわからないです。 もしくは全く違うアプローチをする必要があるのでしょうか? お願いします。

  • DA=DB=DC=a,BC=CA=AB=6

    DA=DB=DC=a,BC=CA=AB=6 で内接円の半径が1のときのaの値を 対称性を使って、接点を求めず、 断面を考えて、求めてください お願いします

  • 平面図形の問題です。

    正七角形の一辺の長さをa、 等しくない2本の対角線の長さをb,cとする時、 1/aをb,cを用いて表せ。 ただし、トレミーの定理(四角形ABCDが円に内接する時、 AB×CD+AD×BC=AC×BDが成り立つ)を用いてよい。

  • 図形の問題が分からないので教えてください。

    (1)a=17、b=10、c=9である△ABCについて、内接円の半径rを求めてください。 (2)△ABCにおいて、a=√(6)、b=√(3)-1、c=2のときAを求めてください。 (3)図において、AB=4とします。PからABに下した垂線PQの長さを求めてください。 ちなみに答えは、 (1)r=2 (2)A=120° (3)2(√(3)-1) です。 よろしくお願いします。