• 締切済み
  • 暇なときにでも

Z会の今まで見たこともない漸化式からある不思議な関連を発見

とても不思議と僕は思っておりますので、ちょっと長くなりますが、どうかお付き合いください。 Z会の問題をヒントに、次のことを発見しました。 a[1]=1 , a[2]=4 a[n+2] - 3a[n+1] + a[n] = 0 ⇔ a[n]<a[n+1] , a[1]=1 a[n+1]^2 - 3a[n]a[n+1] + a[n]^2 = 5 という、漸化式の不思議な同値性です。 ちなみに、{a[n]}={1,4,11,29,76,199,521,…} (⇒)を示すのは比較的簡単です。見通しよくするために構成的に証明してみます。 t^2-3t+1=0の解をα,βとすると、α+β=3,αβ=1 a[n+2] - αa[n+1] = β(a[n+1] - αa[n]) よって、 a[n+1] - αa[n] = β^(n-1) (4 - α) 同様に、 a[n+1] - βa[n] = α^(n-1) (4 - β) これらをかけて、整理すると、 a[n+1]^2 - 3a[n]a[n+1] + a[n]^2 = 5 また、a[n]<a[n+1]は数学的帰納法で示すことが出来ます。 しかし、反対方向の証明がわかりません。 数列の正体は、 a[n]={(1+√5)/2}{(3+√5)/2}^(n-1) + {(1-√5)/2}{(3-√5)/2}^(n-1) なので、それを仲介して大量の計算をすれば証明できるかもしれませんが、見通しよくありません。 a[n+2] - 3a[n+1] + a[n] = 0 という漸化式の解空間は、2次元線形空間になります。つまり、二つの解の和も解だし、一つの解の実数倍も解だし、第一項と第二項が定まれば全部の項が定まるので2次元です。 a[1]=1 , a[n+1]^2 - 3a[n]a[n+1] + a[n]^2 = 5 という2項間漸化式は、 a[n]の値からa[n+1]の値を求めるとき、2つに分岐しますが、それを適当に定めることによって、3項間線形漸化式に帰着されるのはなぜでしょうか? どのような構造があるのでしょうか? http://oshiete1.goo.ne.jp/qa4936699.html で質問させていただいたことと関連して、背景が気になります。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数123
  • ありがとう数3

みんなの回答

  • 回答No.1

> 反対方向の証明 添え字をひとつずらしてみれば、 a[n+1]^2 - 3a[n]a[n+1] + a[n]^2 = a[n+2]^2 - 3a[n+1]a[n+2] + a[n+1]^2, これを (-a[n+2] + 3a[n+1])a[n+2] +(- 3a[n+1] + a[n])a[n] = 0. と整理しておいて、 U[n] = a[n+2] - 3a[n+1] + a[n] とおけば (a[n]-U[n])a[n+2] +(U[n]-a[n+2])a[n] = 0, なので U[n](a[n]-a[n+2])=0. でも a[n+2]>a[n] だから U[n]=0. あとは数列aの一意性を言えば十分?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

まことにありがとうございます。 Z会の本来の問題は次のような形でした。 a[1]=1 , a[2]=4 , a[n+2]=3a[n+1] - a[n] とする。 (1)a[n+1]^2 - 5 = a[n+2]a[n] を示せ。 (2)x^2をyで割ると5余り、y^2をxで割ると5余る3ケタのx,yの組を一つ求めよ。 この問題を元に、いろいろな疑問が思い浮かんできています。 題意の漸化式を行列で表現すると、 ((a[n+2] a[n+1]) (a[n+1] a[n])) = ((3 -1) (1 0)) * ((a[n+1] a[n]) (a[n] a[n-1])) これを繰り返し用いると、 ((a[n+1] a[n]) (a[n] a[n-1])) = ((3 -1) (1 0))^n * ((11 4) (4 1)) この両辺の行列式を取ったものが(1)の漸化式になります。 逆に、(1)の漸化式 a[n+1]^2 - 5 = a[n+2]a[n] で、初項と第二項a[1]=1 , a[2]=4 を与えると、元の数列が復元されるわけですが、これを、行列 (a[n+2] a[n+1]) (a[n+1] a[n])) の言葉を使って書くと、行列の初項が、 (a[3] a[2]) (a[2] a[1]))=((11 4) (4 1)) で、行列式が常に -5 であれば、 ((a[n+2] a[n+1]) (a[n+1] a[n])) = ((3 -1) (1 0)) * ((a[n+1] a[n]) (a[n] a[n-1])) ということです。これを行列の性質を使ってエレガントに示したいと思っているのですが。 (1)の漸化式 a[n+1]^2 - 5 = a[n+2]a[n] に、題意の a[n+2]=3a[n+1] - a[n] を代入すると、質問文で書いた a[n+1]^2 - 3a[n]a[n+1] + a[n]^2 = 5 が得られます。 (x,y)=(a[n],a[n+1])とすると、y^2-3xy+x^2=5 という二次曲線になります。今、数列a[n]は整数列なので、二次曲線上の格子点の一部が求められたことになります。 では、逆に、y^2-3xy+x^2=5 という二次曲線上の格子点を求める問題として出発すると、どのようにして解かれるのでしょうか? (2)の問題を解くには、上記の二次曲線上の格子点を(x,y)としてとればいいわけですが、逆に、 x^2≡5 (mod y) y^2≡5 (mod x) を求める問題として出発すると、どのようにして解かれるのでしょうか? 漸化式、行列、二次曲線の格子点、連立合同式の関係を上手に整理したいと思って考えているのですが。

関連するQ&A

  • Σの公式、階差数列、数学的帰納法、恒等式、漸化式が分かりません

    僕は数学検定の準2級(高校2年レベル)を受けるのですが、 Σの公式、階差数列、数学的帰納法、恒等式、漸化式がよく分かりません。 具体的に言うと、 @Σの公式 ・Σの上にある数字は、何を表しているのですか? ・Σの下にあるk=1とはなんですか?kとは初項のことですか? @階差数列 ・階差数列そのものの意味が分かりません。どんな数列のことを言うんですか? @数学的帰納法 ・数学的帰納法は「数列の証明をする時に使う物」という解釈で良いのでしょうか? ・n=kの時と有りますが、kとは何ですか? @恒等式、漸化式 ・恒等式、漸化式そのものがよく分かりません。  どんな時に使うものなのですか? このうち1つだけでも良いので、誰か教えて下さいおねがいします。 中3なので、分かりやすく教えてもらえると助かります。

  • 漸化式を解く問題なのですが。

    この漸化式、nに具体的に数値をいれていくと簡単に法則性が見つかって、数学的帰納法で一般項は出るのですが。 式変形をして等比数列の形に持って行って解くなどの解き方はありませんかね? 言い換えると 具体的に数値代入→規則性発見→帰納法で証明 以外の一般項の導き方はありませんか?

  • 線形代数の問題で困っています。

    U={F:V→W|Fは線形写像} とおき、 Vを3次元線形空間とし、{v1,v2,v3}を基底とする。 Wを2次元線形空間とし、{w1,w2}を基底とする。 このとき (1)Uは線形空間であることを示せ。 (2)Uの基底を一組求めよ。 (3){v1,v2,v3}、{w1,w2}を用いて同型写像を作ることにより、UとM(2,3)は同型になることを示せ。

  • 線形空間の等式証明について。

    線形空間の等式証明について。 添付している、線形空間の等式証明ですが、どのようにすれば証明した事になるのでしょうか?

  • 漸化式の問題です^^;

    問題;各項が正の数である数列{a[n]}は,a[1]=t,a[n+1]=(1/2)*(a[n])^2+1/4で定義されている。またxの2次方程式 x=(1/2)*(x^2)+1/4の2解をp,qとする。p<t<qであるとき,以下の問いに答えよ。 (1)p,qの値を求めよ。 (2)任意の自然数nについて,不等式p≦a[n}≦tが成り立つことを示せ。 (3)lim[n→∞](a[n])を求めよ。 【自分の解答】 (1)は普通に2次方程式解いて、できました。 (2)も数学的帰納法を用いて一応できました。 (3)が全然わかりません…。 はさみうちの原理を用いるのだろうという予想はつくのですが、使い方がいまいちわからなくて^^; どなたか教えてください^^w よろしくお願いします。(・∀・)

  • Zornの補題について

    Zornの補題を用いて、すべての線形空間V(≠{0})にも基底が存在する事を証明するにはどうすれば良いのでしょうか? わかる方いましたら解答を教えて頂けると助かります。<(_ _)> Zornの補題:帰納的順序集合Xには極大元が存在する

  • ベクトルの証明問題です。

    3次元の実線形空間のベクトルx={x1,x2,x3}^Tのうち、x1+x2+x3=0を満たすものは、3次元の実線形空間の部分空間を作ること、ならびにその部分空間は2次元であることを示しなさい。 この問題の解説を何方か宜しくお願いします。

  • 線形空間についての質問です

    (1)数列の一般項a_nについて 「a_n∈Vならばlima_nが存在し、その収束値をαとするとα∈V」となるような空間Vについて a_n,b_n∈Vのとき  lim(a_n+b_n)=lim(a_n)+lim(b_n)∈V lim(k・a_n)=k・lim(a_n)∈V Vは数0を零元としてもち、-a_nを逆元として持つ    などよりVは実線形空間である (2)収束しないa_nを並べた集合、つまり数列{a_n}={a_1, a_2, ・・・}全体の集合をVとする。ここでA=V∪{{0,0,0,・・・・}}とする。 (つまり上で定めたような数列{a_n}と数列{0,0,0,・・・・}を元としてもつ空間をAとする) このとき{a_n}{b_n}∈Aについて {a_n+b_n}={a_n}+{b_n} {k・a_n}=k{a_n}=k{a_1, a_2, ・・・}と定義したとき、Aは線形空間となる。 (なぜなら、和やスカラー倍がうまく定義できており、 Aは零元{0,0,0,・・・}と逆元{-a_n}={-a_1,-a_2,・・・}を持つから。) (3)実数列{x[n]}={x[0], x[1], x[2], ・・・}について、相並ぶk+1項のあいだに、 x[n+k]+a[k-1]x[n+k-1]+・・・a[1]x[n+1]+a[0]x[n]=0 なる関係、つまり漸化式が成立するようなもの全体の集合Aは実線形空間となる。 なぜなら{x[n]}{y[n]}∈Aについて {x[n]}+{y[n]}={x[n]+y[n]}={x[0]+y[0],x[1]+y[1],・・・} {k・x[n]}=k{x[n]}=k{x[0],x[1],・・・}と定義すれば Aにおいて和やスカラー倍がうまく定義できており 実数列全体の集合Vにおける零元{0}={0,0,0,・・・}は与えられた漸化式を満たすので{0}∈A 同様にVにおける逆元{-x[n]}={-x[0],-x[1],・・・}は、与えられた漸化式を満たすので{-x[n]}∈A などによりAは実線形空間である この(1)(2)(3)の主張、自分で考えてみたのですが、正しいでしょうか? 添削よろしくお願いしますm(_ _)m

  • 数学的帰納法について

    1.漸化式、a_1=1、a_(k+1)=a_k/1+a_kで表される一般項a_nをa_2、a_3、a_4の値から推測し、その予想が正しいことを数学的帰納法で証明せよ。 2.円周上に異なるn個の点をとるとき、これらを結んでできる線分の個数をa_nとする。a_1=0である。 (1)a_k+1とa_kの関係を求めよ。 →答えは、「a_(k+1)=a_k+k」となったのですが、その過程が自信ないのでお願いします。 (2)a_nをnの式で表せ →これも、答えは、「a_n=n(n-1)/2」となったのですが、その過程が自信ないのでお願いします。 最後になりましたが、そもそも「数学的帰納法」とはなんなのでしょうか? なぜ、これを使うと証明ができるのか・・・も併せて教えて頂けると勉強になります。よろしくお願いします。

  • a を解とする 斉次線型漸化式を つくり

      「難問克服 解いてわかるガロア理論」 ▼藤田岳彦 (著)▼     に a[n]=2^(3*n+5)+3^(n+1) ●5|a[n] 問題● 在り。    a を解とする 斉次線型漸化式を つくり 其の証明を 是非願います。        は瞬時に 済まされた 筈;公開 を 再三 願います;    「何度も言うよ」と アスカ も云う; https://www.youtube.com/watch?v=Q9qAyt0G-jM ↓ に 推奨らしい 数学的帰納法に よる ex; 6|(n^3 - 6*n^2 + 11*n)の https://dictionary.goo.ne.jp/jn/78354/example/m0u/     youtube 桃色吐息 異国の響きあり     ◆小細工に よる 証明 が 在る◆ [416p] ; https://books.google.co.jp/books?id=Aq9TCwAAQBAJ&pg=PA416&lpg=PA416&dq         a[n]=n^3 - 6*n^2 + 11*n a を解とする 斉次線型漸化式を つくり 其の証明を 是非願います。 [そして 両者の何れを お気に入り と されるか 理由付の解説を願う]        a[n]=2^(2*n + 1) + 1         3|2^(2*n + 1) + 1 の ◆小細工に よる 証明 が 在る◆  == 遊びついでに == a を解とする 斉次線型漸化式を つくり 其の証明を 是非願います。 https://www.youtube.com/watch?v=KloD-2ksHQQ&list=RDKloD-2ksHQQ&start_radio=1#t=23