• ベストアンサー
  • すぐに回答を!

ゲーデルの不完全性定理について

ゲーデルの不完全性定理について ネットサーフィンをしていたときに、たまたま、ゲーデルの項目を見つけました。 当方、数学は素人なのですが、 ゲーデルの不完全性定理(ある公理系の中には、真偽を明確にできない命題が存在する) を僕たちが生きるこの世界、この宇宙にあてはめて考えると、 この世の中には、論理的には正しいとも間違っているとも証明できないことがらがあるということなのでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数159
  • ありがとう数21

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

> 論理的には正しいとも間違っているとも証明できないことがらがある これくらいで十分だと思いますね. もうちょっといえば 「数を扱える無矛盾な体系には論理的に真偽が証明できないものがある」 「数を扱える無矛盾な体系は,自身の無矛盾性を証明できない」 という感じかな. これ以上になると話が大きくなりすぎる. 難しい証明ではないんだけども,話が大きいので ついていくのが大変なんですよね。。この定理の証明. ちょうど結城浩さんの数学ガールシリーズでゲーデルものが でてるし,読んでみるのもいいかもしれません. 不完全性定理の証明もしてるようです. で・・・ >矛盾がないようにどんなに公理を定めたとしても,正しいとか間違っているとか決められない事柄がある,というのもゲーデルの主張でしょう。 「自然数論を含む」というと「無矛盾だ」ということが重要. ぶっちゃけた話,数を含まない体系だと 「ゲーデルの完全性定理」なんてものもあって 話はちょっとちがってくるのでややこしい.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • ゲーデルの不完全性定理を詳しく教えてください。

    ゲーデルの不完全性定理を詳しく教えてください。

その他の回答 (2)

  • 回答No.2
  • f272
  • ベストアンサー率45% (5375/11810)

#1の人が言ってることは,ちょっと気にかかります。 > 「法律の体系の中では、法律(の体系)自身が正しいということを証明できない」 ここで正しいと言うのは矛盾がないという意味だと思えば気になりませんが,それだからと言って > 正しいと定められたこと(=公理)を前提にした上で、個々の事柄を正しいとか間違っているとか、という証明はできます。 これはちょっとねえ。矛盾を含むようなことを前提にすれば別ですが,矛盾がないようにどんなに公理を定めたとしても,正しいとか間違っているとか決められない事柄がある,というのもゲーデルの主張でしょう。 > 論理的には正しいとも間違っているとも証明できないことがらがある こんな風に理解しておけば,まあ,いいんじゃないだろうか。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

こんばんは。 私流に、わかりやすいつもりで一言で表すと、 「法律の体系の中では、法律(の体系)自身が正しいということを証明できない」 というようなイメージです。 >>>この世の中には、論理的には正しいとも間違っているとも証明できないことがらがあるということなのでしょうか。 正しいと定められたこと(=公理)を前提にした上で、個々の事柄を正しいとか間違っているとか、という証明はできます。 たとえば、「人殺しは悪いことだ」と「悪いことをした人は刑に処する」という前提のもとでは、「殺人者を刑に処する」ということは間違っていません。 しかし、「人殺しは悪いことだ」などを含むルールの体系自身が正しいかどうかは証明できません。 ご参考になりましたら幸いです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ゲーデルの不完全性定理

    不完全性定理って結局、数学は不完全であるということが証明されたってことですよね?だとしたら、これから数学を研究することに何の意味があるのでしょうか?

  • ゲーデルの不完全性定理とは?

    入門書を読んで理解を深めてから質問しようと思っていたのですが、なにぶん多忙かつ 魯鈍であるため、ほとんど理解していない状態での質問をお許しください。 ゲーデルの不完全性定理の入門書を読むと、一般人向けの説明として次のように記述されて います。 ●自然数論を含むような数学的体系の無矛盾性を、その体系内で証明することはできない。 これは、分かりやすいく言うとどういうことなのでしょうか。論理記号式を使用しないと 説明は無理ですか。 不完全性定理は「自己参照」とか「自己言及」を行なった際に生じる、避けられない 困難性や矛盾の存在を言い表しているのだと思いますが、次のような(安直とも言える) 拡大解釈を許すような、普遍性のある定理なのでしょうか。 ●認識主体が自分自身を完全に認識することはできない。(認識) ●哲学が哲学を完全に定義することはできない。(定義) ●体制が自己の正当性を自分で証明することはできない。(証明)

  • ゲーデルの不完全性定理を、小学生にも分かるように教えていただきたい

    本の中の不完全性定理の説明文で、 >「この命題は証明不能である」  という命題が証明可能であるならば、  この命題の中で主張している「証明不能である」ということと、  それが「証明可能」であるということとは、  「矛盾」していることになる。 とあるのですが、 どうして矛盾しているのでしょうか? (何となくはわかるのですが) 私は、小学生くらいの数学知識しかないので、 命題、証明の意味がよくわかってないのかもしれませんが、 たとえば 未確認物体(宇宙人みたいな)が、草原などにあったと仮定して、 解剖しても今の科学では、この物体は「なにか」わからない。 「この物体は証明不能である」 今の科学では証明不能であるということは、 証明可能なのではないのでしょうか (科学がまだ未発達ということで) ということとは意味が違うのですかね? 自分で書いていても、頭が混乱してきました・・・笑 数学の知識がある人には笑われる質問かも知れませんが、 「小学生(私)には、証明不可能」な問題を、 証明可能な方、教えて頂きたい。・・・笑 お願いします。

  • 不完全性定理は素人には理解できませんか?

    不確定性理論は概念として理解できます でも不完全性定理は??? ω無矛盾性や公理系とかどうもわかったようなわからんような、、、 正直しっくりこないです どなたか単純な系を例示して御教授いただけませんか?

  • ゲーデルの不完全性定理で出てくる「証明できない」

    ゲーデルの不完全性定理の証明に関する本をいろいろ読んでみましたが(あまり厳密なものは読んでいませんが)、どの本を読んでいても理解が先に進まず立ち止まってしまうところがありました。それは、「証明できない」ということの定式化(言葉がこれで正しいのかわかりませんが)についてです。 ある論理式が「証明できる」というのは、使用できる「公理」と「変形規則(推論というのでしょうか、これも言葉が正確かすみません覚えていません)」を有限回使用してその論理式に実際に到達できること、という理解をしており、これは理解できます。 これに対してある論理式が「証明できない」というのは、以下の(A)(B)(C)のどの意味なのでしょうか。 (A)使用できる「公理」と「変形規則」を有限回使用してもその論理式に実際に到達できない、ということ。 (B)その論理式の否定が証明できる、ということ。 (C)その論理式が証明できない、ということを示す何らかの論理式に、使用できる「公理」を「変形規則」を有限回使用して実際に到達すること。 (A)かなとも思いますが、それってどのように理解すればよいのでしょうか。1000回使用して到達できなくても、1001回使用すれば到達できるかも知れないのでは?  (B)ではないと思っていますが自信がありません。 (C)は実際には(A)だったり(B)だったりする?。。判断ができません。 昔の一時期、結構悩みました。現在再チャレンジしていており同じ個所で悩んでいます。もやもやを晴らして頂ければ大変うれしいです。

  • デーデルの不完全性定理の素朴な疑問

    具体的なことはよくわからないのですが、 数学の系が無矛盾ではありえないというのがゲーデルの不完全性定理 だとするなら、その不完全な数学によって設計された飛行機や 電車などが設計通りに動くのはなぜですか? 数学の不完全性というのは誤差の範囲なのでしょうか? お分かりの方いらっしゃいましたらご教授ください。

  • 不完全性定理 ユークリッド幾何学 公理

    専門家の方にお聞きしたいのですが、不完全性定理でいう「自然数論を含む帰納的に記述できる公理系が、ω無矛盾であれば、証明も反証もできない命題が存在する。」において、 ユークリッド幾何学における証明も反証もできない命題=ユークリッド幾何学の5つの公理 ということでよろしいでしょうか?? また、ユークリッド幾何学の5つの公理以外には、ユークリッド幾何学において証明も反証もできない命題は存在しないと考えていましたが、正しいでしょうか?

  • 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sに

    私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 『例えば無限遠点において平行線は交わるは証明可能である』はその例のように思うのですが 間違っているでしょうか。 問題は 無限遠点が公理を用いて表されるか どうか という先輩のご指摘があり公理をあらためてみてみますと 公理2に線分を限りなく伸ばすことができる とあります。つまり無限遠点は「公理2の限りなく線分を伸ばした点」と理解され 公理の定義を用いることで表されるとおもうのです。間違っているでしょうか。参考までに公理を挙げておきます。 <ユークリッド 幾何学の公理> (公理1)与えられた2点に対して、それらを結ぶ線分をちょうど1つ引くことができる。 (公理2)与えられた線分は、どちらの側にも限りなく伸ばすことができる。 (公理3)平面上に2点が与えられたとき、一方を中心とし、他方を通る円をちょうど1つ書くことができる。 (公理4)直角はすべて相等しい。 (公理5(平行線公理))直線外の1点を通り、その直線に平行な直線は1本に限る

  • ゲーデルの不完全性定理が成立している以上、人口知能が自らの存在に対して

    ゲーデルの不完全性定理が成立している以上、人口知能が自らの存在に対しての答えを自ら導き出すことができないのではないかと考えています。 帰納法では自らの存在とは何かに対しての答えを見つけることができないという解釈からくる考えです。 本当にそうでしょうか?

  • 不完全性定理から証明された「真理性 Ω は、ランダムである」とはどういうことですか?

    ゲーデルの不完全性定理の応用でチャイティンが、 「任意のシステム S において、そのランダム性を証明不可能なランダム数G が存在する」 という事を証明し、その後「真理性 Ω は、ランダムである。」という定理を発表したようですが、 この「真理性 Ω は、ランダムである。」とはどういう意味なのですか? 論理学も数学もほとんど無知ですが感覚的に分かるように説明して頂けませんか。よろしくお願いします。