• ベストアンサー

素数の分類に関して

現在素数の分類に関して勉強しているのですが、8n+1型、8n+3型8n+5型、8n+7型の素数が無限に存在するということはどのようにして証明できるのでしょうか。1つの型の証明方法でもいいので示して頂けると幸いです。お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.2

8n+5型の素数 共通因数を持たない2つの平方数の和 m=(3^2)・(5^2)・(7^2)・・・(p^2)+2^2 を考える。 奇数2k+1の平方(2k+1)^2=4k(k+1)+1 であるから、それは8n+1の形をしている。 従ってmは8n+5の形をしている。 mが素数ならば、それは8n+5の形でpよりも大きい素数である。 mが合成数ならば、その素因数の中に8n+5の形のものが少なくとも1つある。 (8k1+1)(8k2+1)=8(8k1・k2+k1+k2)+1 であるから、もしmの素因数がみな8n+1の形であったとするとmは8n+5の形ではあり得ない。そこでqをmの素因数で8n+5の形のものとする。 qはpと互いに素でなければならないからq>pである。 故に8n+5の形の素数は無限にある。 ------------------ 以下の事実を使っている。 aとbとが共通因数を持たないならばa^2+b^2の奇数の素因数はどれも4n+1の形をしている ------------------

HOTMASK
質問者

お礼

非常に分かり易い証明ありがとうございます。 4n+1型の素数が無限にあることが証明できさえすれば、4の倍数の8n+1型も証明できますね。 残りも頑張って見つけてみたと思います。

その他の回答 (2)

  • yoikagari
  • ベストアンサー率50% (87/171)
回答No.3

http://aozoragakuen.sakura.ne.jp/suuron/node34.html の定理27はどうでしょうか? 「8n+1型の素数が無限に存在する」という事実は、この定理27のm=8における特別な場合です。

HOTMASK
質問者

お礼

とても参考になりました。 素数に関する証明は難しい部分も多いですが、理解できる形にしていきたいと思います。

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

Dirichletの算術級数定理 でググってください 個別にはもっと簡単に証明できるのかもしれませんが。

HOTMASK
質問者

お礼

回答ありがとうございます!この定理も非常に難しいですね。 もう少し優しく証明できる題材があればよいのですが・・・頑張って探してみます。

関連するQ&A

  • 素数の分類と無限性に関して。

    素数の分類と無限性に関して。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 この証明の流れや、8n+1型の素数が無限に存在することは理解できるのですが、上の証明における「位数は 8 で有るから、 p ≡ 1 (mod. 8) となる」の部分がどのようにして言えるのかが分かりません。フェルマーの小定理を用いているのでしょうか? よろしくお願いします。

  • 素数の分類に関して

    [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 この証明における、この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。がなぜ言えるのかという点と 最後の一文である 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)がなぜ分かるのかが理解できません。 よろしくお願いします。

  • 素数の分類に関して

    前回質問させていただいた証明に関することなのですが、最後の一文が分からないためもう一度質問させていただきます。 [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)となった場合なぜ有限性に矛盾していると言えるのでしょうか。 a2+2b2が素数でないならば矛盾はしてないのでしょうか。 よろしくお願いします。

  • 素数が無限個存在すること(エルデシュによる証明)

    素数が無限個存在することの証明について、 素数―wikipedia―によれば、エルデシュによる素数の逆数和の 発散性の証明は、素数が無限個存在することの証明にもなっているらしいです。 (証明において、素数が無限個存在することを用いていないため・・・?) http://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0 その証明は、 背理法による。 n 番目の素数を pn とする。 素数の逆数和が収束すると仮定すると、 任意の ε > 0 に対してある自然数 N が存在して、 1/pN+1 + 1/pN+2 + 1/pN+3 + ... < ε となる。 ★ いま、 ε = 1/2 としよう。任意の自然数 n に対して ・・・・・・・・ と説明されているのですが、 ★マークの部分がよくわかりません。 素数が無限個存在することを使用しているのでは!? もし有限なら、はるかに小さいεがとれないのではないでしょうか? どうかご教授ください。

  • メルセンヌ素数でない素数は無限に存在するか?

    素数は無限に存在することが知られています。 ユークリッドやオイラーの証明があります。 また、コンピュータでは、大きい素数を探すときに、 メルセンヌ素数を探します。 しかし、メルセンヌ素数は無限にあるかどうかわかりません。 ここで、質問です。 メルセンヌ素数でない素数は、無限にあるのでしょうか? 素数はメルセンヌ素数かメルセンヌ素数でない素数のどちらかです。 その二種類を合わせると、無限個ありますから、 メルセンヌ素数が有限個ならば、メルセンヌ素数でない素数は無限個あるとわかります。 でも、メルセンヌ素数は有限個しか見つかっていないだけで、 本当に有限個かどうかはわかりません。 メルセンヌ素数でない素数が無限個あるかどうかもわからないのではないでしょうか? それとも、他の方法で、わかるのでしょうか? 例えば、メルセンヌ数(素数とは限らない)とメルセンヌ数(素数とは限らない)の間には、 2個以上のメルセンヌでない素数が存在することがわかっているとか。 でも、ずっと先に行くと、素数はすべてメルセンヌ素数になっているということは 考えられないでしょうか? しかし、双子素数が無限に存在するならば、メルセンヌ素数でない素数が無限に存在しそうですね。 双子素数より弱くても、よさそうですね。 素数分布とか考えると、どうなるのでしょうね。 やっぱり、メルセンヌ素数でない素数は無限個あるような気がしてきました。

  • 素数の分類と無限性に関して。以前質問させていただいたことの延長になりま

    素数の分類と無限性に関して。以前質問させていただいたことの延長になります。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 同じ方法を用いることで証明することはできたのですが、 この証明の中で用いている「位数は 8 で有るから、 p ≡ 1 (mod. 8) となるの部分に関して ラグランジュの定理         位数nの有限郡Gの任意の部分郡Hの位数はGの位数の約数である を用いた場合、GとHに当たる部分はどこになるのでしょうか。今の段階では、nがp-1にあたり、Hの位数が8と考えています。pが素数で、8はp-1の約数になるとの考えは当っているでしょうか・・? よろしくお願いします。

  • 双子素数についてのことです

    双子素数がむげんにあるということの証明は これで充分じゃないでしょうか? nは2以上の自然数 (1~n 番目の素数をかけていった積)+1 は素数 (1~n 番目の素数をかけていった積)-1 は素数 (1~n 番目の素数をかけていった積)±1 は双子素数 素数は無限個あるので双子素数も無限個あることになる これでいいのではないでしょうか?

  • 素数 反例

    素数が無限であることの証明について。 http://homepage2.nifty.com/mathfin/hairihou/hairihou03.htm 素数が無限個でないことがある。すなわち,素数が有限個であることがあると仮定し、                                           (反例の存在を仮定)  その個数をn個とする。すべての素数を小さい方から順に          P1,P2,P3 ,・・・・・・,Pn      とおける。ここで,           P = P1×P2×P3×・・・・・・×Pn + 1    により,自然数Pをつくると,    Pは, P1,P2,P3 ,・・・・・・,Pn のいずれで割っても1余る。      よって,Pは1と自分自身以外に約数を持たないから素数である。    これはPnよりも大きい素数が存在することを意味しており,矛盾が生ずる。    よって,素数が有限個であることはない(反例は存在しない)     ゆえに,素数は無限に存在する --------------------------------------------- P=2 × 3 × 5 × 7 × 11 × 13 + 1 = 59 × 509 という反例がありますが、 上記の証明は間違いということですか?

  • 素数は無限

    質問2点。 1. 「素数は無限に存在する」証明をwikipediaで調べると、 背理法で素数が無数にあることを証明した、 素数の積に1を加えた数が素数であることを証明した」などの誤解をする者がいるが、 いずれも正しくない と書かれています。 wikipediaが常に真実とは限りませんが、 Google検索で素数の無限である証明で検索すると、上記の誤解している人による解説ばかりです。 何を(どちらを)信じればよいか分からずに困っています。 2. wikipediaによる正しい証明によると、、、 素数の個数が有限と仮定し、p1, … pn が素数の全てとする。その積 P = p1 × … × pn に 1 を加えた数 P + 1 は、p1, …, pn のいずれでも割り切れないので、素数でなければならない。しかし、これは p1, …, pn が素数の全てであるという仮定に反する。よって、仮定が誤りであり、素数は無数に存在する。 これは、背理法による証明だと思うのですが、、、、 お手数ですが、よろしくお願いします。

  • 素数についての質問です。

    いくつか聞きたいことがあります。 ●素数は無限個あるということは証明されているのでしょうか? ●nと2nの間に必ず素数があるかどうかという問題は解かれているのでしょうか? ●ある素数が何番目に出てくる素数であるかを求める公式はありますか? もし、ない場合そのような公式を作れば大発見? ●1000万桁の最小の素数はXであるとを発表したとき、それが正しいかを調べるのは誰? ●素数関連で単純だけど解けていない問題で賞金のかかったものはありますか? 一応自分で調べてはいるものもあるのですが、見つけた情報が いつのもので正しいかどうかがいまいち不明なので書かせてもらいました。お願いします。