• ベストアンサー

群の同型について

akubisekaiの回答

回答No.2

数学では普通構造として同じものとみなせるとき同型という言葉を用います。 数学におけるもっとも基本的な考え方です。 位相幾何学だと同相とホモトピー型が等しい 微分幾何学だと微分同相に対応 群が同型であるということはどのような利点があるという質問ですがまったく異なると思われる群構造が実は同型であるということを示すだけでも数学として面白いことですしその事実を使っていろいろなことを示すことができます。 たとえば円周のなす群はR/Zと同型でありそのことを使って円周の基本群を求めることができます。

関連するQ&A

  • 群の同型について

    同型な群というのにはどのようなものがあるのでしょうか? 具体的な例を教えてください。 また、準同型定理や、同型定理を証明したのですが、具体的なものが考えられず、 いまいちイメージがわきません。 簡単な説明も兼ねて教えてくださると助かります。

  • 体の準同型について

    複数の本でガロア理論について学んでいるのですが、 「K自己同型」という言葉の定義が複数あって困っています。 (1)K,Aを体とする。KからAへの準同型があるとき、AをK代数という。 K,A,Bを体、φ:K→A、ψ:K→Bを準同型とし、φ,ψにより、A,BをK代数とみなす。このとき、準同型f:A→Bが、f◦φ=ψという条件を満たすとき、fをK準同型という。K準同型が体の同型のときK同型という。 AがK代数である時、AからAへのK同型全体の集合は写像の合成により群になる。これをK自己同型群といい、Aut_k (A)とかく。 (2)Aを一つの体とする。Aの自己同型全体をAut(A)で表し、自己同型群と呼ぶ。 Aの一つの部分体Kが与えられたとする。σ∈Aut(A)がKのすべての元を固定するとき、σはAのK上の自己同型と呼ばれる。K上の自己同型の全体はAut(A)の部分群をなすので、この部分群をAのK上の自己同型群という。 (2)の定義の方は理解できたのですが、(1)のK代数の扱いがよくわかりません。この二つの定義は本質的には同じことを定義しているのでしょうか。(よろしければ、そうなる理由も書いていただけると嬉しいです。)

  • ガロア理論について

    現在ガロア理論について学習しています. ガロア理論によって帰結される結論に,「5次以上の方程式は代数的に解くことが出来ない」というものがありますが,ガロアは最初からこの結果を得るために,群論というものを考えたのでしょうか? それとも,何か他の目的で群というものを考え始め,それを発展,応用していく中で上の結果を得ることが出来たのでしょうか? 現在はこのガロア理論も整理され,「5次以上の方程式は代数的に解くことが出来ない」ということを導く一連の過程をガロア理論と呼ぶように思えますが,ガロアもはじめからそのことを達成するために新しく代数学を生み出したのでしょうか? 初歩的な質問かもしれませんが,気になったので教えてください. よろしくお願いします.

  • 群論の同型定理について

    同型定理Bの証明について分からないので教えてください。 画像内の証明は参考書の証明です。 この過程が分かりません。 埋め込み写像とか、写像iやρが準同型になる理由など… KerfやImfが分かったところで、なぜ正規部分群になるのでしょうか? 1行ずつ分かりやすく説明していただけたら助かります。 正規部分群、核および像、準同型定理がどういうものかはなどは理解しています。 色々と分からないのですがよろしくお願いします。

  • エヴァリスト・ガロアがせめて80位まで生きてたら

    群論、代数方程式の解法の研究などガロア理論で有名なガロアが 20の苦境そのものの人生で終わらずに、 せめて80位まで、順調に数学を研究することができていたら、 数学は相当発展していたのではなかろうかとも思えます。 どれくらい発展していたと考えられるでしょうか? 例えば、群論などは、もはや、群が完全に分類させていたりして…

  • 対称群、交代群。

    群論の課題が出たのですが、よくわかりません。 アドバイスお願いします。 (1)4次の交代群A_4の位数4の可換部分群Kを答えよ。 (2)対称群S_4の部分群Hで(1)のKを含み、 位数8の2面体群と同型な群を答えよ。 (1)で部分群の位数は、4の約数だから、1,2,4の どれかであることは、わかるのですが、それからが わかりません。あと、A_4に位数4の元は、存在しない といわれたのですが、なぜですか? (2)は、どうやって同型な群を見つければよいのですか?  よろしくお願いします。

  • 準同型定理について

    写像f:Z→Z;m→2mは、準同型写像でKerf={0},Imf={2m|m∈Z}であることまでは分かったのですが・・・ これに準同型定理を適用すると、どのような群の同型対応が得られるのですか?? よろしくお願いします。

  • A加群A(Λ)からA加群Mへの準同型写像と同型な物

    代数学、加群の勉強をしていたところ壁にぶち当たってしまいました・・・ Aは可換環とします。 A加群Mについて A(Λ)をAのΛによる直積(すべてのλ∈Λに対してAλ=A)とする 同様にM(Λ)も定めます HomA(A(Λ),M) と M(Λ) を考えたときこれら二つは同型になりますか? ちなみに AのΛによる直和を(+)Aとして HomA((+)A,M)とM(Λ)が同型なのは定理として証明が乗っているのですが、それを更に直積まで拡張した場合どうなるのかについては一切の説明がありませんでした。

  • 準同型写像がみたす性質

    Gを0を零元とする群、F:G→Gを準同型写像とします。 準同型定理、G/KerG~ImG              = がなりたちますが、他に満たす性質はご存知ないでしょうか。

  • 群、半群だと何が嬉しいのですか?

    群論(?)について全くといっていいほど勉強したことがないのですが、他の分野の勉強をしている時によく群や半群といった言葉が出てきます。 ・結合則を満たす時に半群 ・更に逆元と単位元が存在すれば群 という定義はわかるのですが、群や半群だと何が良いのでしょうか? (群にはどんな性質があるんでしょうか?) 線形代数の時に、置換は群をなすとか。 力学系の勉強をしている時に、解軌道が半群をなす。 とかチマチマ出てきていたのですが、「定義は確かに満たしてるのはわかるけど… だから何??何がいえるの?」という疑問がいまだに残っています。