• 締切済み
  • すぐに回答を!

群の同型について

同型な群というのにはどのようなものがあるのでしょうか? 具体的な例を教えてください。 また、準同型定理や、同型定理を証明したのですが、具体的なものが考えられず、 いまいちイメージがわきません。 簡単な説明も兼ねて教えてくださると助かります。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

では、具体的な群の例を 10個ほど補足に挙げてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 群の同型について

    現在,ガロア理論を理解するために,まず群論を勉強しています. そこで「準同型定理」や「群が同型である」という言葉が出てきます. そこで質問なのですが,「群が同型」であるということはどのような利点があるのでしょうか?

  • 群論の同型定理について

    同型定理Bの証明について分からないので教えてください。 画像内の証明は参考書の証明です。 この過程が分かりません。 埋め込み写像とか、写像iやρが準同型になる理由など… KerfやImfが分かったところで、なぜ正規部分群になるのでしょうか? 1行ずつ分かりやすく説明していただけたら助かります。 正規部分群、核および像、準同型定理がどういうものかはなどは理解しています。 色々と分からないのですがよろしくお願いします。

  • A加群A(Λ)からA加群Mへの準同型写像と同型な物

    代数学、加群の勉強をしていたところ壁にぶち当たってしまいました・・・ Aは可換環とします。 A加群Mについて A(Λ)をAのΛによる直積(すべてのλ∈Λに対してAλ=A)とする 同様にM(Λ)も定めます HomA(A(Λ),M) と M(Λ) を考えたときこれら二つは同型になりますか? ちなみに AのΛによる直和を(+)Aとして HomA((+)A,M)とM(Λ)が同型なのは定理として証明が乗っているのですが、それを更に直積まで拡張した場合どうなるのかについては一切の説明がありませんでした。

  • 準同型定理について

    写像f:Z→Z;m→2mは、準同型写像でKerf={0},Imf={2m|m∈Z}であることまでは分かったのですが・・・ これに準同型定理を適用すると、どのような群の同型対応が得られるのですか?? よろしくお願いします。

  • G,G'を有限群とし,ψ:G→G'を準同型とするとき

    G,G'を有限群とし,ψ:G→G'を準同型とするとき Im ψの位数がG,G'の位数の約数となることを証明せよ. また,G,G'の位数が互いに素なとき,GからG'への準同型写像をすべて求めよ. という問題なのですが,Im ψがG'の部分群であり,ラグランジュの定理より Im ψの位数がG'の位数となることはわかるのですが,他がわかりませんどなたか解説お願いします.

  • 同型写像に関する問題

    問題を解いていて A→Bが環の同型写像であるとき、その既約剰余群 (A)^* → (B)^* が群の同型写像になるってことを証明しないといけないらしいんですが、そのままいえないんですか? どうやって証明すれば良いんですか?

  • 準同型写像がみたす性質

    Gを0を零元とする群、F:G→Gを準同型写像とします。 準同型定理、G/KerG~ImG              = がなりたちますが、他に満たす性質はご存知ないでしょうか。

  • 同型の質問です

    ある命題の証明の途中で同型を示そうと思ったのですが,いまいちわからなかったので,ご助言いただければ幸いです・ 命題: R-加群の完全列{0}→X→Y→Z→{0](φ:X→Y,ψ:Y→Z)について、次の性質は同値: (1)R-準同型ρ:Y→Xで,ρφ=1xとなるものが存在する; (2)R-準同型μ:Z→Yで,ψμ=1zとなるものが存在する. (1x,1zはそれぞれX,Zの恒等写像) このとき,次の直和分解を得る: Y=φ(X)○+Ker(ρ) = Ker(ψ)○+μ(Z) ~=X○+Z (○+は直和, ~=は同型を表しています.) 前半の同値性は証明できたので,認めることにします. 後半の証明において,テキストでは, Y = φ(X) ○+Ker(ρ) ・・・✽ となり,φは単射,ψは全射であるから, φ(X) ~= X , ・・・(1) Ker(ρ) ~= Y/φ(X)~=Z ・・・(2) を得る. となっていました.(✽までの過程は自力でできたので割愛させていただきます.) (1)に関しては準同型定理から示せましたが, (2)がいまいちわかりませんでした. よろしければご助言お願い致します

  • 同型でない証明

    数1、3、7、9、11、13、17、19は20を法とする積で群をなしている。この群がZ8と同型でない理由を説明せよ、 という問題が分かりません。良かったら教えて下さい。

  • 同型であることの示し方を教えてください。

    整数Zと有理数Qが加法群として同型であるかどうかを示したいのですが、 同型であることを示す証明がいまいちできません。 写像をどのように定義すればいいのですか? 写像を定義すればあとその写像が f(ab)=f(a)f(b)であることを示して 全射であることを示せばいいと思うのですが・・ 写像がいまいちわかりません。 あと、R → R*=R-{0} の時の写像もどのように考えればいいのでしょうか?