• ベストアンサー

広義の二重積分の求め方

次の問題が途中までしかわかりません。 問:次の広義の二重積分を求めよ。  ∬[D] (x^2)(e^(-x^2-y^2))dxdy D:{x≧0 y≧0} {Dn}を原点を中心とした半径nの円とDとの共通部分とすれば、{Dn}はDの近似増加列である。ここで、x=rcosθ,y=rsinθに変換し計算すると、 ∫dθ∫(r^2)((cosθ)^2)(e^(-r^2))rdr (θの積分範囲:0→π/2、 rの積分範囲:0→n) =-(π/32)(4e^(-n^2)n^3 + 6e(-n^2)n^2 + 6e(-n^2)n + 3e(-n^2) - 3) となりました。(この計算は少し自信がありません) 残りの、n→∞にとばす計算の仕方がわかりません。 因みに、答えはπ/8 です。 どなたかご教授お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

#1さんのやり方が一般的かと思います。 質問者さんのやり方は初めてです。 > n→∞にとばす計算の仕方がわかりません。 ロピタルの定理を使えば簡単にできるでしょう。 e^(-n^2)n^3=(n^3)/e^(n^2)→(n^3)'/{e^(n^2)}'=(3n^2)/{2ne^(n^2)} =(3/2)n/e^(n^2)→(3/2)(n)'/{e^(n^2)}'=(3/2)/{2ne^(n^2)}→0 e(-n^2)n^2=(n^2)/e^(n^2)→(n^2)'/{e^(n^2)}'=(2n)/{2ne^(n^2)} =1/e^(n^2)→0 e(-n^2)n=n/e^(n^2)→(n)'/{e^(n^2)}'=1/{2ne^(n^2)}→0 e(-n^2)=1/e^(n^2)→0 従って =-(π/32)(4e^(-n^2)n^3 + 6e(-n^2)n^2 + 6e(-n^2)n + 3e(-n^2) - 3) → -(π/32)(-3) となるかと。 しかし、この計算だと(3π/32)となりますので、積分の途中計算で計算ミスをしているようです。 ∫_D dθ∫(r^2)((cosθ)^2)(e^(-r^2))rdr =∫[0,π/2]((cosθ)^2)dθ∫[0,∞](r^3)(e^(-r^2))dr =(π/4)*(1/2)=π/8 が出てきます。 ここで ∫[0,π/2]((cosθ)^2)dθ=(1/2)∫[0,π/2](1+(cos(2θ))dθ =(1/2)[θ+(1/2)sin(2θ)]_[0,π/2] =(1/2)(π/2)=π/4 ∫[0,∞](r^3)(e^(-r^2))dr r^2=tと置換(rdr=dt/2) =∫[0,∞] t(e^(-t))dt/2 =(1/2)[t(-exp(-t))]_[0,∞] +(1/2)∫[0,∞](e^(-t))dt =-(1/2)lim[t→∞] t/exp(t) +(1/2)[-e^(-t)]_[0,∞] =-(1/2)lim[t→∞] 1/exp(t) …(ロピタルの定理使用) +(1/2) =1/2

east-i
質問者

お礼

ご回答ありがとうございます。 変数変換するやり方は、教科書の例題に載っていたのでその方法でやってみたのです。 計算の仕方も理解できました。丁寧に解説してくださり、ありがとうございました。

その他の回答 (1)

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

変数変換などせず普通に計算すればよい。 ∫∫[D](x^2){e^(-x^2-y^2)}dxdy=∫[x:0→∞](x^2)e^(-x^2)dx∫[y:0→∞]e^(-y^2)dy となります。 後ろ側の積分はガウス積分の半分。前の積分は次のように部分積分します。 ∫(x^2)e^(-x^2)dx=∫(-x/2){-2xe^(-x^2)}dx =(-x/2)e^(-x^2)+(1/2)∫e^(-x^2)dx 前の項はx→0,x→∞のいずれも0に収束、後ろの項はガウス積分から得られます。

east-i
質問者

お礼

ご回答ありがとうございます。 教科書に変数変換のやり方しか載っていなかったので、その方法で解いてみました。 このようにすれば簡単なのですね。理解できました。ありがとうございます。

関連するQ&A

  • 2重積分について

    次の積分を計算せよ。 ∫∫x^2*y dxdy D={(x,y)|x^2+y^2≦2x+2y} この積分はx=rcosΘ y=rsinΘでおきかえて 範囲は0≦r≦√2 -π/2≦Θ≦π/2 求める答えは-8√2/9で合っているでしょうか? もし合っていないなら正しい答えを求める数式を書いていただけると幸いです。

  • 二重積分について。

    x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。

  • 広義積分

    広義積分の問題で、 ∫e^(-x^2) x=[0,∞] (インテグラルeのマイナスx二乗乗) の解が√π/2であることを示すのに、 (与式)^2=∬e^{-1/2(x^2+y^2)} dxdy (与式の二乗は、eの{マイナス二分の一(xの二乗+yの二乗)}乗}をx=[0,∞]、y=[0,∞]で面積分したものに等しい、つまりπ/4) となるのを利用して、極座標に変数変換することによって解けとあったのですが、 これをx=rcosθ、y=rsinθとして計算すると、 どうもrとθの範囲がr≧0、0≦θ≦π/4とならなければならないようなのですが、 なぜπ/4となるのかがわかりません。 どのように考えればいいのでしょうか? わかりにくくて申し訳ありません・・・。

  • 広義積分

    広義積分の問題が解けません。ヒントでもいいので教えてください。 問題 以下の広義積分の値を求めよ。 ∬log√(x~2+y~2)dxdy 積分範囲D:x~2+y~2<=1です(<=は以下の意味です) とりあえず x=rcosθ,y=rsinθの置換を用いて計算していったのですがしっくりきません。 最初の式変形は ∬rlogr drdθで合っているかも不安です。。 どなたか助け舟をお願いします。

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • 極座標での二重積分

    ∬D[(y^2)/{(x^2+y^2)^3}]dxdy D={(x,y)|x≧0,y≧0,x^2+y^2≧1} この問題の正答がわかりません。 とりあえず、x=rcosθ,y=rsinθとして極座標に変換。すると ∬[{(sinθ)^2}/(r^3)]drdθ すると、θの範囲は0≦θ≦π/2でいいとして、rの範囲がr≧1となってしまい、どう計算したらいいかわかりません。 何か勘違いしているのでしょうか? どなたかご解説いただけるとありがたいです。

  • 重積分

    以下の問題がどう変換してもややこしくなり困っています (1)∬(D)√x dxdy  D={(x、y);x^2+y^2<=x} 例えば極座標変換を使用しようとしてx=rcosθ、y=rsinθと置いたとしても、円の大きさが変数なので、 ∫(√rcosθ←0)dx∫(7/4π←5/4π)√rcosθ・r dθとなり 計算が困難です。どなたかご教授お願いします   

  • 広義重積分の積分範囲について

    次の積分を求めよ。 (1) D={(x,y):0≦y<x≦1}のときの∬_D(1/√(x-y))dxdy (2) E={(x,y):0<x≦y≦1}のときの∬_E(1/√(x^2+y^2))dxdx という二つの問題についてですが、解答を見て(1)についてはDをD_n={(x,y):1/n≦x≦1,0≦y≦x-(1/n)}とすればよいというのは分かったのですが、(2)についてはE_nを決めることが出来ません。解答には「E_nを右図のようであるとする」と書いていたのですが図は明らかにE_n={(x,y):0≦x≦y,1/n≦y≦1}となっていました。 これでは最終的にn→∞としても最初の条件である0<xが満たされないのでダメなように見えるのですがこれでよいのでしょうか?また解答のように図で示すのではなく上に書いたような不等式で示すにはどのように書けばよいのでしょうか?(この問題に関して) まだ何題かしか解いていないのでイマイチ範囲の取り方がつかめません。何かポイントがありましたらアドバイスよろしくお願いします!

  • 2重積分を極座標を利用して求めよ

    ∬[D]log√(x^2+y^2)dxdy D: 1≦x^2+y^2≦4, x≧0, y≧0 詳しい解説お願いします。 x=rcosθ, y=rsinθ と置いた時のrとθの範囲がわかりません。

  • 円と直線の交差する範囲(重積分)

    重積分の範囲が、円の方程式と1次関数になっている場合の考え方をご教授願います。 ∬ y dxdy 積分範囲 x^2+y^2≦4 かつ y≧2-x x^2+y^2≦2^2 より、原点を中心とした半径2の円が考えられます。 極座標でx=rcosθ, y=rsinθとすれば、0≦r≦2 , dxdy=r drdθ 又、y=2-x のグラフは点(0,2)と点(2,0)で円周と接するので、 積分範囲は半径2の円の第一事象の部分 [0≦θ≦π/2かつ0≦r≦2] から [0≦x≦2かつ0≦y≦2-x] を引いた範囲が積分範囲と考えて良いのでしょうか? つまり、∫[0 2]dr∫[0 π/2] rsinθr dθ-∫[0 2]dx∫[0 2-x] y dy の式に累次積分できるんですかね? お手数をお掛けいたしますが、ご指導願います。