• ベストアンサー

広義積分

広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
noname#111804
noname#111804
回答No.3

被積分関数が上下対象(π/2回転した場合)}のようです。 このため全体を積分すると0になるようです。 局座標変換でやっても積分範囲に注意しないと0になります。

Kiriya_0
質問者

お礼

図まで付けていただきありがとうございます!!

その他の回答 (2)

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

dθ に関する積分を dt に関する積分に変換 した操作には、間違いはありません。 t の範囲が 0→0 だから、こっちの積分の値は 0 という計算も正解です。 間違いは、もっと前の部分にあります。 重積分を dr に関する積分と dθ に関する積分の積に分解したとき、 dr のほうの積分は発散します。 ここで、∞×0 型の不定形を 作ってしまっているのです。

Kiriya_0
質問者

お礼

解説ありがとうございました^^ 不定形なだけだったのですね。

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

御質問のとき方とは違いますが、もっと簡単に計算できます。 I=∬{(x^2-y^2)/(x^4+y^4)}dxdy(領域Dにおける積分、以下略) とおきますと 領域D内はx,yについて対称(つまり(x,y)∈Dであれば(y,x)∈D)であることから、積分中の文字xとyを入れ替えても値は変わらない。 (積分内の変数など別の文字に変えても問題は無い。x→y,y→xとしても領域がそれにあわせて変われば問題ないのである。この場合、領域Dはx,yを入れ替えても全く同じになる。) I=∬{(y^2-x^2)/(y^4+x^4)}dxdy=-I 2I=0 I=0 ε→0とすると、I→0

Kiriya_0
質問者

お礼

そんな解き方もあったのですね!? 解説ありがとうございました^^

関連するQ&A

  • 3重積分について

    ∫(D) |x| + |y| + |z| (dx)^3 領域D:{x^2 + y^2 + z^2≦a^2, a>0}という問題で、解が(3πa^4)/2になるはずなのですが、極座標に変換する段階でいまいち分かりません。自分なりにやると、 x=rsinθcosφ, y=rsinθsinφ, z=rcosθ (0≦r≦a, 0≦θ≦π, 0≦φ≦2π)として、ヤコビアンがr^2 sinθになり、 ∫(D) |x| + |y| + |z| (dx)^3 =∫[0→2π]dφ∫[0→π]dθ∫[0→a]dr (r^2 sinθ)(rsinθcosφ+rsinθsinφ+rcosθ) このようになるのですが、自分がこれを解いていくと違った解になり、正解にたどり着きません。この変換が間違っているのでしょうか?単に途中の計算が間違っているのでしょうか? よろしくおねがいします。

  • 広義積分教えてください

    次の問題説いてください (1) 空間上の(x,y,z)を極座標(r,θ,φ) x=rsinθcosφ , y=sinθsinφ , z=rcosθ に変換するときヤコビアンを求めよ (2) 広義積分 I(a)=∫∫∫(exp-(x^2+y^2+z^2))/((x^2+y^2+z^2)^a) dxdydz 積分範囲はすべて-∞~+∞ についてa=1/2の時のI(1/2)を求めよ (3) I(a)が収束するaの範囲を求めよ (4) 広義積分 J(a,b)=∫∫∫1/((x^2+y^2+z^2)^a)*(|log(x^2+y^2+z^2)|^b) dxdydz が収束するようなa,bの満たすべき条件を求めよ 積分範囲B B={(x,y,z);x^2+y^2+z^2<1/4} (1)のヤコビアンは 行列式 ∂(x,y,z)/∂(u,v,w) を解いて(r^2)sinθ というところまではとけるのですがその後がわかりません よろしくお願いします

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 変数変換したときの積分範囲について

    ∫∫∫ log(x^2+y^2+z^2) dxdydz {(x,y,z) | x^2+y^2+z^2≦t^2} この積分の値を求める問題があります。 変数変換で、x=rsinθcosψ、y=rsinθsinψ、z=rcosθ として、解くと思うのですが、 この場合の、r、θ、ψの範囲がどうなるのかがよくわかりません。 参考書でほぼ同じような問題を見つけたら、その問題は 0≦r≦t 0≦θ≦π 0≦ψ≦2π という範囲で積分していたのですが、この問題の場合でもこの範囲で良いんでしょうか?おそらく半径tの円を考えると思うのですが 考え方がよくわかりません。 参考書にも詳しく書かれてなかったので質問させてもらいました。 よろしくお願いします。

  • 【三重積分】球の体積の求め方

    x=rsinθcosω y=rsinθsinω z=rcosθ 上記の変数変換を使った三重積分で球の体積を求める時、θの範囲が0≦θ≦πとなるのはなぜでしょうか?(ωの範囲は0≦ω≦2πとなるのに、なぜθは0≦θ≦2πにはならないのでしょうか。)

  • 二重積分について。

    x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。

  • 広義積分

    広義積分の問題で、 ∫e^(-x^2) x=[0,∞] (インテグラルeのマイナスx二乗乗) の解が√π/2であることを示すのに、 (与式)^2=∬e^{-1/2(x^2+y^2)} dxdy (与式の二乗は、eの{マイナス二分の一(xの二乗+yの二乗)}乗}をx=[0,∞]、y=[0,∞]で面積分したものに等しい、つまりπ/4) となるのを利用して、極座標に変数変換することによって解けとあったのですが、 これをx=rcosθ、y=rsinθとして計算すると、 どうもrとθの範囲がr≧0、0≦θ≦π/4とならなければならないようなのですが、 なぜπ/4となるのかがわかりません。 どのように考えればいいのでしょうか? わかりにくくて申し訳ありません・・・。

  • 2重積分

    ∬xdx(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません アドバイスお願いします。

  • 積分

    先ほど質問しましたが、一部打ち間違えていました。 お手数ですが、再度おねがいします。 ∬xdxdy(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません。

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。