• ベストアンサー
  • すぐに回答を!

統計における母平均の差の検定について

ある統計学の問題に挑戦しており、解法に自信が持てないので質問させていただきます。 この問題では、あるダイエット法が効果があるかどうかを調べるために、8人の被験者を用意し、全員に同一のダイエット法を行ってもらう、というものです。与えられている情報は 1.被験者は8人である。 2.ダイエット法を行う前の各被験者の体重 2.ダイエット法を1週間行った後の各被験者の体重 です。この問題を解くにあたって、私はこのダイエット法を用いている人は無数おり、その母平均から大きさが8の標本を取ってきたと考えました。 そこで、ダイエット法前の母平均をμ1、ダイエット法後の母平均をμ2して 帰無仮説:μ1=μ2、対立仮説:μ1>μ2として、母平均の差の検定を行い、問題を解くことを試みました。 この問題の答えがどうなるかは今回の質問では問題ではないのですが 考え方や問題の解き方は以上のように行ってよいのでしょうか? それとも、何か別の有効な手段があるのでしょうか。 ご回答のほど、よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数220
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

それで普通だと思います。ただし質問者さんの例の場合対応のある2組の平均値の差になります。(それぞれの人のダイエット前と後を対応させられる。) ダイエット前の体重をXi(i=1,2...8)、ダイエット後の体重をYiとして di=Xi-Yi が8個取れます。 dav=Σdi/8 Sd={Σ(di-dav)^2/(8-1)}^(1/2) を用い t=dav/[Sd/√8] が自由度8-1=7のt分布をする、として評価できます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

この考え方が普通のようでしたら、安心して作業を進められます。 ご丁重な回答ありがとうございました。

関連するQ&A

  • 2群間平均の差の検定 差が“ない”ことを示すには?

    2群間平均の差の検定 差が“ない”ことを示すには? お世話になってます。 2群の平均を比べて,両者の平均には差が“ない”という仮説を設定して検定したいと考えています。 通常の2群間の平均の差の検定は,両者の平均に差が“ある”ことを仮説として設定して, 帰無仮説に「2群の平均に有意な差がない」を設定し,対立仮説に「2群の平均に有意な差がある」を設定しています。 もし両者の平均には差が“ない”という仮説を検定したい場合には,単純にt検定を行って,棄却されなかった=「2群の平均に有意な差がない」という結論ではいけないと統計の授業で習った気がします。 その理由を説明できなくて申し訳ないですが・・・ そこで質問なのですが, 帰無仮説に「2群の平均に有意な差がある」を設定し,対立仮説に「2群の平均に有意な差がない」を設定してもよいのでしょうか? そして,「2群の平均に有意な差がある」という帰無仮説を検定するためにはどのような検定方法を用いればいいのでしょうか? お時間ございましたら,ご教示のほど宜しくお願い申しあげます。

  • 統計学の仮説検定は、両側検定しかありえないのでは?

    統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。 コイン投げにおいて、表が出る確率をP(H)、裏が出る確率をP(T)とします。 帰無仮説が「P(H)=0.5」である場合、対立仮説を「表が出やすい。P(H)>0.5」とすると片側検定、「コインに偏りがある。P(H)>0.5またはP(T)>0.5」とすると両側検定と説明されます。帰無仮説は同じだでれども、対立仮説が何であるかによって片側検定か両側検定かが決まる、という説明が少なくとも2つの教科書に書かれています。 しかし私は、帰無仮説と対立仮説は互いに排反で、かつ2者で標本空間をカバーし尽くせる(起こりうる全ての事象をカバーできる)ものでなければいけない、と思います。 帰無仮説「P(H)=0.5」に対する対立仮説は「コインに偏りがある。P(H)>0.5またはP(T)>0.5」であるべきだと考えます。そして、「P(H)=0.5」とP(H)の値が特定の1つの値であれば、コインを投げる回数が決まれば(例えば10回)、表が出る回数(0&#65374;10回)の確率分布を得ることが可能なので、検定できるわけです。 対立仮説を「表が出やすい。P(H)>0.5」とするのであれば、帰無仮説は「P(H)<=0.5」であるべきだと思います。そうでないと標本空間をもれなく考慮したことになりません。ところが、P(H)=0.5はさておき、P(H)<0.5のもとでは、P(H)の値が無数にあります。ということは、例えば10回中表が0回の確率は無数にあります。10回中表が1回の確率も同様です。したがって、表が出る回数(0&#65374;10回)の確率分布を得ることができないので、検定できません。 以上の理由で、統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。

  • 統計学(検定)の問題なのですが…

    母平均が既知、母分散が未知である正規母集団の母分散σ^2>0について、 帰無仮説:σ^2=σ_0^2 対立仮説:σ^2>σ_0^2 と設定し、片側検定を有意水準5%で行うことを考える。真の値がσ^2=(1/3)σ_0^2であるとき、97.5%以上の確率で帰無仮説が棄却されるために必要な標本数の最小値はいくらか。 という問題が解けず、どなたか考え方をお教え頂けると幸いです(σ_0は添字です)。本文ではこの下にずらずらとカイ二乗の値が並んでいます。答え自体は分かっていて、22個ということでした。自分は東大出版会の統計学入門という本で学んだのですが、これに類する問題は目にしたことがなく、いささか戸惑っています。 また、もし宜しければこのように少し応用しなければ解けない統計学の問題集をご存知の方がいらっしゃいましたら教えて頂けると光栄です。単なる検定なら実行できるのですが、応用力が全く身に付かず困っています…。 長くなりましたがどうぞ宜しくお願い致します。

  • 統計学でよくわからないポイントがあります。。

    統計学のp値の説明で以下のような記載があり何度読んでも調べてみても理解できませんでした。 「帰無仮説 H0 μ≧1000 対立仮説 H1 μ<1000 このとき実際μ=1000のとき標本数が30とすると、標本平均が999以下となる確率が26%であったとします。 この26%のことをp値と呼び、H0の信頼性評価の一種である。26%という信頼性評価はその評価に関わらずH0が真であるおおよその確率である。」 ここで26%は999以下となる確率であるのになぜH0の真である確率となるのか理解できません。 H0は1000以上なので逆に偽である確率となるのではないのでしょうか? もしわかりましたら教えて頂けたら幸いです。。

  • 統計解析法

    統計解析手法の検定についての質問です。 2つの母平均の差の検定の場合です。 帰無仮説H0:μ1=μ2 対立仮説H1:μ1≠μ2とします。 帰無仮説が棄却された場合は結論として対立 仮説が成り立ち、第1種の過誤はαであり、 このケースは問題ありません。 しかし、帰無仮説が棄却されない場合、第2 種の過誤の問題があり、積極的に結論として 帰無仮説が成り立つとは言えません。 上記問題は、2つの母平均の差の検定の手法を 使って、積極的に2つの母平均に差が無いと言 う結論を統計的に導き出す事の障害になります。 2つの母平均の差の検定の手法をうまく工夫 する事、又は、別の手法で、2つの母平均に差 が無いとの結論を統計的に導く事は出来な いでしょうか? ご教授の程宜しくお願い致します。

  • 統計学3

    以前にも似たような質問をして今回もその回答のようにやってみましたが、やっぱりうまくいきません。毎度申し訳ありませんがまた教えてください。 課題 8.  S 社の14インチ液晶ディスプレイ(A-xyz) 13 台の寿命を測定したところ,次の結果を得た.   寿命時間が指数分布に従うものと仮定して,平均寿命時間 t に関する 帰無仮説 H0: t=7942.00,対立仮説 H1: t<7942.00 を,有意水準 0.04 で検定せよ. また,平均寿命時間 t に関する下側信頼区間を信頼度 0.96 で構成せよ.    27847 6482 18846 8828 1778 6545 15847 5200 5443 9570 9870 1999 4086 検定統計量= 臨界値(棄却域の端の値)= 帰無仮説 H0は 棄却される,or棄却されない 信頼区間 ( 0 , ] ただし,検定統計量=2×標本数×標本平均÷(帰無仮説の元での平均寿命)

  • 正規母集団で母分散未知の場合の母平均を検定する

    正規母集団で母分散未知の場合の母平均を検定するのに、t分布を使って次のようにしようと思いますがそれでよろしいでしょうか? 1. ある物体(非常にたくさんある)のパーツA、Bのそれぞれの長さの比が4対1であるように思われた。 2. そこで、この長さの比の平均値μ0(ゼロは添え字)=4と仮定し、さらにこの比が正規分布していると仮定する。 3. n=20の標本をとる。 4. 標本平均を「ラージXバー(以下、単にX_と略記)」、不偏分散をs^2、(sは標準偏差)とするとき次の確率変数Tは自由度n-1のt分布に従う。T=(X_-μ0)/(s/√n) 5. 帰無仮説H0=4、 対立仮説H1≠4 6. 有意水準を5%とします。 7. 両側検定とします。 8. 棄却域は2.093以上、または-2.093以下。 9. 20の標本からX_、s を求めて、Tを計算します。 10. もしT=1.8 ならば、帰無仮説は受容されます・・・等々。 このような進め方でよろしいでしょうか、よろしくお願いいたします。

  • 統計 検定の仮説の質問です。

    検定の最初に仮説を立てます。例えば、下記のように仮説を立て検定の結果、対立仮説が採用されたとします。 ・帰無仮説H0:μ1=μ2       ・対立仮説H1:μ1≠μ2・・・採用 しかし、帰無仮説は最終的に棄却されるべき仮説なので、μ1=μ2であるかμ1≠μ2によって、結論が変りますね(悪く言えば、恣意的に結論を変えられます)。 検定における仮説の立て方について、不変的な基準はあるのでしょうか? 宜しくお願い致します。

  • 仮説検定の問題

    Sくんは新学期が始まってから、学校中をまわり、162人に紅白歌合戦を見たかを聞きました。その結果、145人が見たと答え、17人が見ていないと答えました。  このデータで学校のみんな(9割以上)が紅白歌合戦を見たといえるか。有意水準α=0.01で仮説検定しなさい。ただし、全校生徒は162人よりも十分多いとする。 この場合、帰無仮説をp=0.9、対立仮説をp>0.9と設定するところまでは分かったのですが、 標本平均、母分散、検定統計量をどのように設定し、どのように解くのかがわかりません。 どなたか解説お願いします。

  • 統計学について

    ど素人で申し訳ないですが、統計学について質問です。 50人に同じダイエット効果のある物を摂取させて、開始時、1カ月後、2カ月後、3カ月後の体重を測定して何かしらの統計を取りたいのですが、どんなことがありますでしょうか? 帰無仮説、対立仮説など参考書で目にしたのですが、あまり内容がわからず・・・ 本当に漠然とした質問ですいません。 ちなみにエクセルを使っています。