• 締切済み
  • 困ってます

統計 検定の仮説の質問です。

検定の最初に仮説を立てます。例えば、下記のように仮説を立て検定の結果、対立仮説が採用されたとします。 ・帰無仮説H0:μ1=μ2       ・対立仮説H1:μ1≠μ2・・・採用 しかし、帰無仮説は最終的に棄却されるべき仮説なので、μ1=μ2であるかμ1≠μ2によって、結論が変りますね(悪く言えば、恣意的に結論を変えられます)。 検定における仮説の立て方について、不変的な基準はあるのでしょうか? 宜しくお願い致します。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

帰無仮説としてμ1≠μ2とすることはできないです。その場合、検定統計量の分布を一意に指定できないので。 μ1-μ2=Cとなる適当なCを定めて差がCでないことを示す検定は考えられますが。 恣意的に結論を変えるというのは聞こえが悪いですが、示したい仮説を証明する、ということだと考えれば良いのではないでしょうか。 仮説の立て方の基準は、示したい仮説に対応した帰無仮説を立てる、ということで良いと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

貴重なコメント、有難う御座いました。 「帰無仮説としてμ1≠μ2とすることはできないです。その場合、検定統計量の分布を一意に指定できないので。」・・・この内容が未だ十分に理解できませんので勉強してみます。

関連するQ&A

  • 仮説検定

    仮説検定がよくわからないので、用語の説明をしていただけませんでしょうか。 1.仮説H0を帰無仮説ということがあるのは何でですか。 2.仮説H1は対立仮説ということがあるのは何でですか。 3.棄却域とはどんな領域なのか。 4.有意水準とはどんな水準なのか。 5.仮設H0が棄却されるのはどんなときなのか。また、H0を棄却する論拠は何なのか。

  • 検定における対立仮説

    コインを10回投げる 表の回数を観察 生起確率は0.5=1/2 結果・・・・表=0回だった! ₁₀C₀×0.5⁰×(1-0.5)¹⁰=0.00097 帰無仮説 表がでる確率は1/2 対立仮説  表がでる確率は1/2より小さい。 5%で検定をかけたとき、帰無仮説は棄却できると思いますが 対立仮説は”1/2ではない”とすべきか ”表がでる確率は1/2より小さい。”とすべきかどちらが適切なのでしょうか?

  • 統計学の仮説検定は、両側検定しかありえないのでは?

    統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。 コイン投げにおいて、表が出る確率をP(H)、裏が出る確率をP(T)とします。 帰無仮説が「P(H)=0.5」である場合、対立仮説を「表が出やすい。P(H)>0.5」とすると片側検定、「コインに偏りがある。P(H)>0.5またはP(T)>0.5」とすると両側検定と説明されます。帰無仮説は同じだでれども、対立仮説が何であるかによって片側検定か両側検定かが決まる、という説明が少なくとも2つの教科書に書かれています。 しかし私は、帰無仮説と対立仮説は互いに排反で、かつ2者で標本空間をカバーし尽くせる(起こりうる全ての事象をカバーできる)ものでなければいけない、と思います。 帰無仮説「P(H)=0.5」に対する対立仮説は「コインに偏りがある。P(H)>0.5またはP(T)>0.5」であるべきだと考えます。そして、「P(H)=0.5」とP(H)の値が特定の1つの値であれば、コインを投げる回数が決まれば(例えば10回)、表が出る回数(0~10回)の確率分布を得ることが可能なので、検定できるわけです。 対立仮説を「表が出やすい。P(H)>0.5」とするのであれば、帰無仮説は「P(H)<=0.5」であるべきだと思います。そうでないと標本空間をもれなく考慮したことになりません。ところが、P(H)=0.5はさておき、P(H)<0.5のもとでは、P(H)の値が無数にあります。ということは、例えば10回中表が0回の確率は無数にあります。10回中表が1回の確率も同様です。したがって、表が出る回数(0~10回)の確率分布を得ることができないので、検定できません。 以上の理由で、統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。

  • 統計学の検定のもんだいです。

    前回分 すいません、タイプミスがございました、ご容赦をおねがいします。 検定の問題です。答えも知りたいですけど 自身の考え方が正解かどうか 知りたいです。ご指導宜しくお願いします。 健常者のIgG値の平均値は1180(mg/100ml)であることが知られているとする。A病院における透析患者のIgG値(mg/100ml)の平均値は健常者の平均値と異なっていると言えるか、[A]のデータを用いて有意水準0.05で検定せよ A:1326 1418 1820 1516 1635 1720 1580 1452 1600 (1)帰無仮説と対立仮説を記すこと。 (2)有意水準0.05として、この検定の棄却域を求める(両側検定を行う)。 (1)棄却域を求めるためのRのコマンドを記すこと。 (2)求められた棄却域を T>a, T<b という形で記すこと。ここで、a,bは具体的な値。 (3)検定のための統計量の値を求めるRのコマンドを記すこと。 (4)統計量の値を記すこと。 (5)棄却域と比較することにより帰無仮説を棄却するか採択するか決め、結果を記すこと。 (6)最初に与えられた質問(最初の文章)に解答せよ。 (7)p値を求めるRのコマンドと結果の値を記すこと。 (8)p値の結果の値から帰無仮説を棄却するか採択するか決め、結果を記すこと。

  • 統計解析法

    統計解析手法の検定についての質問です。 2つの母平均の差の検定の場合です。 帰無仮説H0:μ1=μ2 対立仮説H1:μ1≠μ2とします。 帰無仮説が棄却された場合は結論として対立 仮説が成り立ち、第1種の過誤はαであり、 このケースは問題ありません。 しかし、帰無仮説が棄却されない場合、第2 種の過誤の問題があり、積極的に結論として 帰無仮説が成り立つとは言えません。 上記問題は、2つの母平均の差の検定の手法を 使って、積極的に2つの母平均に差が無いと言 う結論を統計的に導き出す事の障害になります。 2つの母平均の差の検定の手法をうまく工夫 する事、又は、別の手法で、2つの母平均に差 が無いとの結論を統計的に導く事は出来な いでしょうか? ご教授の程宜しくお願い致します。

  • 仮説検定の仮説の立て方についてです。

    数学を趣味で勉強してるものです。 仮説検定での、帰無仮説と対立仮説の立て方です。 例えば、コインの裏表で 表ならAさんの勝ち、裏ならBさんの勝ちを繰り返していたとします。 しかし、Aさんが「どうも裏の方が出やすいのでは」と疑い、 Bさんは「そんなことはない、どちらも同じだよ」と主張しました。 この時、仮説検定で調べようとした場合、 裏の出る確率をpとした場合 Aさんにとっては、  帰無仮説:p=0.5  対立仮説:p>0.5 Bさんにとっては、  帰無仮説:p>0.5  対立仮説:p=0.5 というように、立場により、仮説の立て方が変わると考えてよいのでしょうか? (立場により二つの仮説が考えられることに違和感を感じるので・・・) アドバイス頂けると助かります。    

  • 仮説の検定です。助けてください。

    「ある硬貨を7回投げたところ、表が6回、裏が1回でた。 この硬貨について「表が出る確率が1/2である」という仮説を 有意水準5%で検定せよ。」 という問題があります。 この以下の解答でいいのかどうかわかりません。お願いします。 帰無仮説「表が出る確率が1/2である」とし、 対立仮説「表が出る確率が1/2でない」とする。 ここで、両側検定を行う。 表が6回以上出る確率は、 7C6(1/2)*7+7C7(1/2)*7 =1/16 =0.0625 また、表が1回以下出る確率は、表が6回以上出る確率と同じなので、 合計すると、 確率は、0.125 となる。 これは、有意水準が5%なので、帰無仮説は、棄却されないことがわかる。 よって、「表が出る確率は1/2でないとはいいきれない。」 どうでしょうか。よろしくお願いします。

  • 回帰係数が1かどうかの検定

    変数xが1増えると変数yも1増える、という仮説を検定した研究で、1に近い回帰係数が得られてt値も低い(例えば1未満)という結果から、この仮説は支持できるというのがありました。これって統計的に正しい推論なのでしょうか。通常だと、例えば係数が正という仮説を検定するために、係数ゼロという帰無仮説を立ててt値が2未満であれば帰無仮説を受容(対立仮説は棄却)し、そして結論を保留する、ということになりますね。ですから先の場合も現状ではなにも言えないということになると思うのですが、それでは係数が1という仮説はどのようにして検定すれば良いのでしょうか。あるいは帰無仮説はどのように立てるのが良いのでしょうか(一般的なのでしょうか)。

  • 統計学、仮説、対立仮説について。

    統計学を勉強し始めたばかりなのですが、最初の方に検定という分野があると思います。そこで、仮説・対立仮説のところに関して質問なのですが、H(0):μ=μ(0)の対立仮説として3つあります。 ’両側検定’ μ≠μ(0) ’左側検定’ μ<μ(0) ’右側検定’ μ>μ(0) この3つの、使い分け?、どういった場合にどの検定を用いるのかわかりません。どの検定を使うのかという条件みたいなものはあるのでしょうか?

  • 帰無仮説 統計 p値

    コインを5回続けて投げて5回とも表がでるとする。 このコインは偏っているといえるか? 通常偏っていると考えて 偏っていない という帰無仮説をたてて、0,5の5乗で約3パーセント P<0.05となっているため仮説は棄却 コインは偏っている。 r=0.90 (P<0.001) 相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下 のようにp値を理解しています。 コインと同様にAとBは相関がないという帰無仮説をたて、計算し偶然r=0.90 になるのは P<0.001という結論を出し、 これだけ確率が低いのだからAとBは相関がないを棄却し、相関係数は0.90は偶然ではない ということでしょうか? 偏っていないのに偶然5回とも表になる確率は5パーセント以下(3パーセント)だから偏っていない という帰無仮説を棄却し コインは偏っているという結論ですが、P<0.05という決まりがありこれ以下なら帰無仮説は棄却できるということですか? 通常偏っていなと考えて 偏っている という帰無仮説をたててしまったらどうなるのでしょうか?