• ベストアンサー
  • 暇なときにでも

仮説検定の仮説の立て方についてです。

数学を趣味で勉強してるものです。 仮説検定での、帰無仮説と対立仮説の立て方です。 例えば、コインの裏表で 表ならAさんの勝ち、裏ならBさんの勝ちを繰り返していたとします。 しかし、Aさんが「どうも裏の方が出やすいのでは」と疑い、 Bさんは「そんなことはない、どちらも同じだよ」と主張しました。 この時、仮説検定で調べようとした場合、 裏の出る確率をpとした場合 Aさんにとっては、  帰無仮説:p=0.5  対立仮説:p>0.5 Bさんにとっては、  帰無仮説:p>0.5  対立仮説:p=0.5 というように、立場により、仮説の立て方が変わると考えてよいのでしょうか? (立場により二つの仮説が考えられることに違和感を感じるので・・・) アドバイス頂けると助かります。    

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#227064
noname#227064

検定が帰無仮説が棄却されれば対立仮説を採用し、それ以外は何も言えないことをわかっていれば、立場によって仮説が変わったとしてもおかしいことはないでしょう。 とはいえ、Bさんの仮説立て方で検定は難しいです。 実際に数値を入れて見ましょう。 例えば13回コイントスするとして、有意水準を5%とします。 Aさんの場合ですと、9回以上裏になる確率は13.34%、10回以上が4.61%なので、10回以上裏がでれば帰無仮説を棄却して、p > 0.5だと言えます。 対立仮説が正しい場合、10回以上裏が出る確率は帰無仮説が正しい場合よりも大きい。 Bさんの場合ですと、帰無仮説の一つのp=0.6のときは4回以下になる確率3.20%、5回以下は9.77%なので4回以下なら帰無仮説を棄却したいところですが、p=0.55のとき3回以下になる確率2.03%、4回以下は6.98%なので、有意水準を5%以下にするためには3回以下にしないといけない。いや、p=0.51のとき…… というように全ての帰無仮説で有意水準を5%以下に抑えるには3回以下とする必要がありますが、これは対立仮説のp=0.5が正しいときの3回以下となる確率と同じになってしまいます。そのため結局のところ、帰無仮説が棄却されたとしても、対立仮説を積極的に採用する理由がなくなってしまいます。 Bさんの場合は通常、同等性の検定を行うことになるでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

アドバイスありがとうございます。 帰無仮説はp=0.5という風に、イコールで立てないと 確率分布が決定できないんですね。わかってきました。 同等性の検定については勉強してみます。

その他の回答 (1)

  • 回答No.2

その仮説の立て方は、始めて見るので自信はないですが。 どういう立場であれ、Aさんのように帰無仮説は差がないとするのが一般的です。 「差がある」としてしまうと検定できなくなるので。 もう一つの理由は、この確率は対数の法則でP=0.5に近づくということが分かっていますので、有意水準を小さくすることが可能だと思うからです。有意水準を小さく出来れば、第一種の過誤が起こりにくくなるからです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

アドバイスありがとうございます。 帰無仮説はp=0.5という風に、イコールで立てないと 確率分布が決定できないんですね。わかってきました。

関連するQ&A

  • 統計学の仮説検定は、両側検定しかありえないのでは?

    統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。 コイン投げにおいて、表が出る確率をP(H)、裏が出る確率をP(T)とします。 帰無仮説が「P(H)=0.5」である場合、対立仮説を「表が出やすい。P(H)>0.5」とすると片側検定、「コインに偏りがある。P(H)>0.5またはP(T)>0.5」とすると両側検定と説明されます。帰無仮説は同じだでれども、対立仮説が何であるかによって片側検定か両側検定かが決まる、という説明が少なくとも2つの教科書に書かれています。 しかし私は、帰無仮説と対立仮説は互いに排反で、かつ2者で標本空間をカバーし尽くせる(起こりうる全ての事象をカバーできる)ものでなければいけない、と思います。 帰無仮説「P(H)=0.5」に対する対立仮説は「コインに偏りがある。P(H)>0.5またはP(T)>0.5」であるべきだと考えます。そして、「P(H)=0.5」とP(H)の値が特定の1つの値であれば、コインを投げる回数が決まれば(例えば10回)、表が出る回数(0~10回)の確率分布を得ることが可能なので、検定できるわけです。 対立仮説を「表が出やすい。P(H)>0.5」とするのであれば、帰無仮説は「P(H)<=0.5」であるべきだと思います。そうでないと標本空間をもれなく考慮したことになりません。ところが、P(H)=0.5はさておき、P(H)<0.5のもとでは、P(H)の値が無数にあります。ということは、例えば10回中表が0回の確率は無数にあります。10回中表が1回の確率も同様です。したがって、表が出る回数(0~10回)の確率分布を得ることができないので、検定できません。 以上の理由で、統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。

  • 検定における対立仮説

    コインを10回投げる 表の回数を観察 生起確率は0.5=1/2 結果・・・・表=0回だった! ₁₀C₀×0.5⁰×(1-0.5)¹⁰=0.00097 帰無仮説 表がでる確率は1/2 対立仮説  表がでる確率は1/2より小さい。 5%で検定をかけたとき、帰無仮説は棄却できると思いますが 対立仮説は”1/2ではない”とすべきか ”表がでる確率は1/2より小さい。”とすべきかどちらが適切なのでしょうか?

  • 仮説の検定です。助けてください。

    「ある硬貨を7回投げたところ、表が6回、裏が1回でた。 この硬貨について「表が出る確率が1/2である」という仮説を 有意水準5%で検定せよ。」 という問題があります。 この以下の解答でいいのかどうかわかりません。お願いします。 帰無仮説「表が出る確率が1/2である」とし、 対立仮説「表が出る確率が1/2でない」とする。 ここで、両側検定を行う。 表が6回以上出る確率は、 7C6(1/2)*7+7C7(1/2)*7 =1/16 =0.0625 また、表が1回以下出る確率は、表が6回以上出る確率と同じなので、 合計すると、 確率は、0.125 となる。 これは、有意水準が5%なので、帰無仮説は、棄却されないことがわかる。 よって、「表が出る確率は1/2でないとはいいきれない。」 どうでしょうか。よろしくお願いします。

  • 仮説検定の問題

    ある疾病に関する患者200名をランダムに選び、それを100名ずつの2群に分けて、一方には治療薬Aを、他方には治療薬Bを投与した。一定期間後、Aを投与した患者群では46名が、Bでは28人が治癒した。この2つの治療薬の効果には違いがあるといえるか。有意水準5%で検定せよ。 解答 帰無仮説:P(A)=P(B) 対立仮説:P(A)>P(B) P(A)=0.46 P(B)=0.28 P=46+28/100+100=0.37 Z=0.46-0.28/√{0.37×0.63(1/100+1/100)}=2.64 Z>z(0.05)=1.64 より帰無仮説は棄却。 よって有意な差があるといえる。 という解答は正しいですか?

  • 帰無仮説 統計 p値

    コインを5回続けて投げて5回とも表がでるとする。 このコインは偏っているといえるか? 通常偏っていると考えて 偏っていない という帰無仮説をたてて、0,5の5乗で約3パーセント P<0.05となっているため仮説は棄却 コインは偏っている。 r=0.90 (P<0.001) 相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下 のようにp値を理解しています。 コインと同様にAとBは相関がないという帰無仮説をたて、計算し偶然r=0.90 になるのは P<0.001という結論を出し、 これだけ確率が低いのだからAとBは相関がないを棄却し、相関係数は0.90は偶然ではない ということでしょうか? 偏っていないのに偶然5回とも表になる確率は5パーセント以下(3パーセント)だから偏っていない という帰無仮説を棄却し コインは偏っているという結論ですが、P<0.05という決まりがありこれ以下なら帰無仮説は棄却できるということですか? 通常偏っていなと考えて 偏っている という帰無仮説をたててしまったらどうなるのでしょうか?

  • 検定方法どちらがいいのですか?

    ある硬貨を8回投げたところ、表が6回、裏が2回でた。 この硬貨について「表が出る確率が1/2である」という仮説を 有意水準10%で検定せよ。」 という問題があります。 帰無仮説「表が出る確率が1/2である」とし、 対立仮説「表が出る確率が1/2より大きい」とし、片側検定を行うか、 対立仮説「表が出る確率が1/2でない」とし、両側検定を行うのか どちらが正しいのかわかりません。よろしくお願いします。

  • 統計 検定の仮説の質問です。

    検定の最初に仮説を立てます。例えば、下記のように仮説を立て検定の結果、対立仮説が採用されたとします。 ・帰無仮説H0:μ1=μ2       ・対立仮説H1:μ1≠μ2・・・採用 しかし、帰無仮説は最終的に棄却されるべき仮説なので、μ1=μ2であるかμ1≠μ2によって、結論が変りますね(悪く言えば、恣意的に結論を変えられます)。 検定における仮説の立て方について、不変的な基準はあるのでしょうか? 宜しくお願い致します。

  • 仮説検定の問題

    Sくんは新学期が始まってから、学校中をまわり、162人に紅白歌合戦を見たかを聞きました。その結果、145人が見たと答え、17人が見ていないと答えました。  このデータで学校のみんな(9割以上)が紅白歌合戦を見たといえるか。有意水準α=0.01で仮説検定しなさい。ただし、全校生徒は162人よりも十分多いとする。 この場合、帰無仮説をp=0.9、対立仮説をp>0.9と設定するところまでは分かったのですが、 標本平均、母分散、検定統計量をどのように設定し、どのように解くのかがわかりません。 どなたか解説お願いします。

  • 仮説検定

    仮説検定がよくわからないので、用語の説明をしていただけませんでしょうか。 1.仮説H0を帰無仮説ということがあるのは何でですか。 2.仮説H1は対立仮説ということがあるのは何でですか。 3.棄却域とはどんな領域なのか。 4.有意水準とはどんな水準なのか。 5.仮設H0が棄却されるのはどんなときなのか。また、H0を棄却する論拠は何なのか。

  • 仮説の検定(硬貨の問題)が、わからないです。

    「ある硬貨を7回投げたところ、表が6回、裏が1回でた。 この硬貨について「表が出る確率が1/2である」という仮説を 有意水準5%で検定せよ。」 という問題があります。 この解答では、だめな理由を教えてください。お願いします。 帰無仮説「表が出る確率が1/2である」とする。 表が6回以上出る確率は、 7C6(1/2)*7+7C7(1/2)*7 =1/16 =0.0625 これは、有意水準が5%なので、棄却域をこえているため、 帰無仮説は、棄却されないことがわかる。 よって、「表が出る確率は1/2でないとはいいきれない。」 どうしてだめなのかわかりません。 お願いします。教えてください。