• 締切済み
  • すぐに回答を!

数理統計の問題です

X_1,X_2,....,X_nは指数分布に従う無作為標本。H:μ=1(帰無仮説)A:μ=2(対立仮説)を有意水準α= 0.10で検定する最強力検定とそのときの検出力を求めよ。お願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
noname#227064
noname#227064

μは指数分布の母平均で、X_iの確率密度分布は(1/μ)e^(-x_i/μ)ということでしょうか? どこまで自分でできたのでしょうか? それともどこから手を付けたらいいのかわからないのでしょうか? 問題文とお願いしますとだけ書かれても、何がわからないのか回答者にはわかりません。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

> H:μ=1(帰無仮説)A:μ=2(対立仮説) そんな馬鹿なことあるわけないっしょ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 統計の問題【至急お願いします】

    統計の問題にほとんど手が出ません。 お恥ずかしいですがよろしくお願いします。 x1,x2,…,xnが平均μ、分散1の正規分布N(μ,1)をしている母集団からの大きさnの無作為標本であるとする。x^-=Σ[i=1→n](xi/n)と置く。帰無仮説H0:μ=0を有意水準0,05で検定する。回答に必要な記号は適宜説明して用いよ。 標準正規分布上側確率0.025の点は1.96であることを用いよ。 1)対立仮説H1:μ≠0とした場合およびμ>0とした場合の棄却域を与えよ。 2)検出力について一般的に説明し、2)で与えた2つの棄却域についてμ>0の時の検出力と比較せよ。 3)x^-の値が正であることを観測してから対立仮説をμ>0とする方法について考えを述べよ。 自作解答 2)検出力とは、対立仮説H1が正しい時に正しく仮説を棄却する確率のことを言う。 検出力=1-(第二種の過誤を犯す確率)

  • 統計の問題です。

    統計の問題です。 答えがなく困っています。よろしくお願いします。 x1,x2,…,xnが平均μ、分散1の正規分布N(μ,1)をしている母集団からの大きさnの無作為標本であるとする。xバー=Σ[i=1→n](xi/n)と置く。 標準正規分布上側確率0.025の点は1.96であることを用いよ。 1)xバーの標本分布を与えよ。 2)μの95%信頼区間を求めよ。 3)帰無仮説H0:μ=μ0を対立仮説H1:μ≠μ0に対して有意水準0,05で検定するときの棄却域を求めよ。 4)3)の検定問題において、xバーの値を固定した時、棄却されないμ0の値の全体と2)の信頼区間との関係を述べなさい。 一応解いた答えを載せますが、全部自信がないです。 1)f(xバー)=1/√2πexp(-(x-μ)^2/2) 2)P(|(xバー-μ)/1|=0.95 よって、μ-1.96≦xバー≦μ+1.96 3)棄却域Rは、R<-1.96,1.96<R

  • 棄却域の求め方について

    棄却域の求め方について 分からない問題があるので質問させてください。 2つの母集団X,Yがあり、それぞれ正規分布N((μ1),(σ1)^2) , N((μ2),(σ2)^2)である。 このとき、帰無仮説H0 : μ1=μ2 対立仮説H1 : μ1 < μ2 を設定し、有意水準をαで検定したい。2つの母集団から選んだ標本の計測値をそれぞれ x[1],x[2],...x[m] , y[1],y[2],...,y[n]とする。(σ1)^2 = (σ2)^2 として良い時の仮説H0の棄却率を求めよ。 このような問題です。よろしくおねがいしますm(_ _)m

  • 統計学3

    以前にも似たような質問をして今回もその回答のようにやってみましたが、やっぱりうまくいきません。毎度申し訳ありませんがまた教えてください。 課題 8.  S 社の14インチ液晶ディスプレイ(A-xyz) 13 台の寿命を測定したところ,次の結果を得た.   寿命時間が指数分布に従うものと仮定して,平均寿命時間 t に関する 帰無仮説 H0: t=7942.00,対立仮説 H1: t<7942.00 を,有意水準 0.04 で検定せよ. また,平均寿命時間 t に関する下側信頼区間を信頼度 0.96 で構成せよ.    27847 6482 18846 8828 1778 6545 15847 5200 5443 9570 9870 1999 4086 検定統計量= 臨界値(棄却域の端の値)= 帰無仮説 H0は 棄却される,or棄却されない 信頼区間 ( 0 , ] ただし,検定統計量=2×標本数×標本平均÷(帰無仮説の元での平均寿命)

  • 統計学のついて2つ質問が…

    自分で解けずに困っています。教えていただけないでしょうか? 1.標準偏差σ=40の無限母集団から大きさ400の標本を無作為抽出し、その標本平均を求めたら、x=54.1であった。これにより H0:μ=60 (帰無仮説)、H1:μ<60 (対立仮説)を有意水準を5%として検定しなさい。 2.下記のデータについて、x上のyの単純正規線形回帰模型を仮定し、   (1)β、α、rの2乗、σ、σβの値を計算せよ。   (2)βのt値を求め、βが統計的に有意な値かどうかを判定せよ。 2はExcelの「回帰分析」を使っても解けるらしいのですが今までExcelがないので分かりません。一応、インストールはされてます。 文章が分かりにくいかもしれないですが教えていただけないでしょうか?よろしくお願いします。 くだらない質問で申し訳ありません…

  • 統計学

    説明するのが大変なので、まず問題を載せます。 「ある政党の関係者は、その党のの支持率が少なくとも30%はあると主張している。今、全有権者の中から無作為に選ばれた1600人の調査では、その政党の支持者は415人だった。その政党の関係者の主張は正しいか?有意水準1%で検定せよ」 とあるのですが、自分なりに途中までやってみたのですが、よくわかりません。この後どうすればよいか、以下の回答が間違ってるなど、ありましたらお願いします。 帰無仮説 H0:P=30%(0.3) 対立仮説 H1:P<30%(0.3) 標準偏差 √{(0.3*(1-0.3))/1600}     =0.011456 有意水準1%で左側検定なので 正規分布より2.3263という値をとるのは 分かったのですがこの後どうすればよいでしょう?その前にここまではあってるのでしょうか? 返事待っています。お願いします。

  • 統計学に関する質問です

    統計学の仮説検定に関する質問です。 表の出る確率がpのコインを10回投げる時、表の出る回数を確率変数Xとする。 表の出る回数Xをもとに、仮説 帰無仮説:p = 1/2 対立仮説:p ≠ 1/2 を有意水準5%で検定するとき、棄却域を求めよ。 という問題です。 簡単な問題らしいのですが統計初心者なんでよくわかりません・・・ 二項分布B(10、1/2)をN(5、0.5^2)の正規分布にして (T - 5)/0.5 ~ N(0、1) よって棄却域はT≦4.02 T≧5.98 であってますか?汗

  • 社会統計について質問です。

    友人に社会統計学について、質問を受けました。 私は心理学科なので、心理統計しか分からず、困っています。 どなたか助けてください。 以下のような問題です。 体重に関して正規分布N(μ,σ二乗)に従う母集団から、無作為抽出によって以下の16の標本を得た。 62,50,60,48,62,59,36,64,64,62,87,63,75,27,65,76 (1)標本平均、不偏標本分散、不偏標本標準偏差を求めよ。 (2)母平均の最尤推定値(最尤推定量の実現値)を求めよ。 (3)母分散は既知とする。このとき標本平均の標本分布はどのような分布に従うか。「確立変数~確率分布」という形式で答えよ。 (4)母分散は未知であるとする。このとき、母平均の95%信頼区間を求めよ。 (5)母平均は未知であるとする。帰無仮説をHo:μ=52としたとき、適切な検定統計量を求め、5%水準両側検定、1%水準両側検定、5%水準右片側検定、1% 水準右片側検定をそれぞれ実施せよ。 (7)さらに、体重に関して正規分布する別の母集団から、無作為抽出して以下の16の標本を得た。2つの母集団の母分散は未知であるが、母分散は同じであると仮定して良い。「2つの母平均は等しい」を帰無仮説として、母平均の差に関する5%水準両側検定を実施せよ。(ヒント:t0.025(30)=2.042) 65,60,57,76,79,72,57,75,54,75,42,77,38,48,71,78 よろしくお願いします。

  • 統計学2

    またまたすみませんが、教えて下さい。分からないんです 課題 7. あるテレビ番組の視聴率 p (0≦p≦1)を調べるために,アンケート調査を行ったところ, 60 人中 21 人が視聴したと答えた.   帰無仮説 H0: p= 0.26,対立仮説 H1: p≠ 0.26 について,有意水準 0.08 で仮説検定を行え. また,視聴率 p を信頼度 0.92 で区間推定せよ.   ただし,仮説検定と区間推定のどちらに対しても,ラプラスの定理(2項分布の正規分布による近似)を用いよ. 検定統計量(B')= 臨界値(棄却域の端の値)= 帰無仮説 H0は, 棄却されるor棄却されない、どちらか 信頼区間 [ , ] 誰か統計得意な人助けて下さい。お願いします!

  • 統計の問題がわかりません。

    統計の問題です。 途中まで解こうと試みましたが解答・解説が無いため不可能でした。 わかる方助けて下さい。 xを二項分布B(400,p)に従う確率変数とし、p^=x/400の分布を正規分布で近似するものとする。 1)p^の分布を近似する正規分布の平均と分散を示せ。 2)x=80の時、pの近似的95%信頼区間を求めよ。 3)仮説H0:p=0,5を対立仮説H1:p>0,5に対して有意水準0,05で検定するときの棄却域を求めよ。 4)3)の検定についてp=0.55の時の検出力の求め方を示せ。 途中まで作成を試みた解答 1) 二項分布なので(np,npq)の平均と分散になると思い、平均:np=400×(x/400)=x 分散:npq=x(400-x)/400 これは間違いでしょうか? 2)で1)を用いるとP(|x-x|<1.96)=0.95??となるような??? よろしくお願いします。