• 締切済み

確率と期待値。

・1から100までの自然数から1つの数を選ぶとき、 7で割り切れない数字を選ぶ確率を求めよ。 ・当たりの確率は5分の2である抽選を3回続けて 行うとき、次の問いに答えよ。 (1)3回とも当たりが出る確率。 (2)はじめの2回ははずれ、3回目に当たりが出る確率。 (3)3回中、ちょうど1回出る確率。 ・白球4個と赤球3個が入っている袋から同時に3個の球を 取り出すとき、そこに含まれる白球の個数の期待値を求めよ。 何回やっても分かりません(/_;) 出来れば途中式など添えていただけたら幸いです。 問題数多いですがよろしくお願いします。

みんなの回答

  • fatbowler
  • ベストアンサー率48% (26/54)
回答No.3

3つめの問題だけ。 期待値なら単純に、 3×4/7=12/7 でOKです。 4/7が白球で構成される集団から、無作為に300個を選んだ時に その中に含まれる白球の期待値なら、300×4/7と考えますよね? それと同じです。

全文を見る
すると、全ての回答が全文表示されます。
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

最後のやつだけ: 3個の球を取り出すわけだから, 白玉は 0~3個です. そのそれぞれの確率を求めてください.

全文を見る
すると、全ての回答が全文表示されます。
  • mira_jun
  • ベストアンサー率40% (281/699)
回答No.1

7で割り切れない数字を選ぶ確率 →1-(7で割り切れる数字を選ぶ確率) 3回続けて当たる確率 →(当たる確率)^3 はずれ、はずれ、当たりの確率 →(はずれる確率)×(はずれる確率)×(当たる確率) 3回の抽選で1回のみ当たる確率 →上記に(はずれ、はずれ、当たり)の順序の並べ換えの数をかける 白4個、赤3個から同時に3個を取り出す時の白の期待値 →1個ずつ取り出す時の白の確率を加える 4/7+3/6+2/5

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 確率の問題です。

    【問】 袋Aには赤球が1個、白球が2個。袋Bには赤球が1個、白球が2個、それぞれ入っている。 A、Bからそれぞれ1個ずつ球を選んで交換する操作を2回行う。 このとき、Aに入っている赤球が3個となる確率を求めよ。 また、A、Bの両方の袋に赤球が入っている確率を求めよ。 いつもお世話になっております。 この問の自分の答えが合っているか不安なので確認したく、投稿させていただきました。 よろしくお願いします。

  • 数Aの問題です。

    数Aです。 袋の中に白球1個と赤球2個が入っている。この袋から球を1個取り出し、色を確認してもとに戻す。この試行を赤球が連続して2回出るまで行う。ただし、この試行を5回行っても赤球が連続して出ないときは、 そこで試行をやめる。このとき、試行をやめるまでに出る白球の個数を考える。 (1)白球が5個である確率を求めよ。(私の回答:0) (2)白球が0個である確率を求めよ。また、白球が1個である確率を求めよ。 (3)白球の個数の期待値を求めよ。 上記の問題の解き方を教えていただけますでしょうか?

  • 確率・期待値について

    期待値を求める問題なのですが、考え方がわかりません。 問題は 袋の中に赤球2個、黄球1個、青球3個が入っています 取り出す赤球の個数の期待値を求めなさい というものです どのように出せば良いでしょうか? 宜しくお願い致します

  • 確率の問題

    以下の確率の問題を上手く解く方法があれば教えてください。(答は下にあります) AとBの2つの箱があって、Aには白球5個と赤球4個が入っており、Bは空である。いま、Aから球を1個取り出してBに入れるという操作を、Aが空になるまで続けるものとする。このとき、次の各問いに答えよ。 (1)AからBに4個の球をうつしたところで、Bの中にちょうど白球3個、赤球1個が入っている確率を求めよ。 (2)Bの中では、白球の個数がつねに赤球の個数以上である確率を求めよ。 (1)・・・20/63、(2)・・・1/3

  • 確率の問題に困っています

    赤球3個と白球3個が入っている袋から、同時に3個の球を 取り出すとき、次の確率を求めなさい。 1、赤球2個、白球1個を取り出す確率 2、赤球1個、白球2個を取り出す確率 3、2色の球を取り出す確率 4、同じ色の球を取り出す確率 なんですけど…自分ではまったくわかりません わかる方がいましたらご回答くださるとありがたいです。

  • 確率

    白球が4個、赤球がn個(n≧1)の入った袋がある。袋から2個の球を同時に取り出す時 (1)n=2の時、2個とも同じ色の球が取り出される確率を求めよ (2)n=3の時、白球が1個、赤球が1個取り出される確率を求めよ (3)赤球がn個の場合に、白球が1個、赤球が1個取り出される確率をPnとする。Pnをnを用いて表せ。 という3問なのですが、(1)と(2)は答えを求めてみました。が、自信は無いです。(1)7/15、(2)1/3となりました。(3)は分かりません。おそらく、(1)、(2)も間違っていると思います。間違いを教えて下さい!お願いします。

  • 確率の問題の考え方

    1つの袋に同じ大きさの球が9個入っていて、そのうち4個は赤球、3個は白球、2個は青球である。4個の球を同時に取り出すとき、取り出した赤球の個数が、取り出した青球の個数以上となる確率は**/**である。 この問題で私は74/126→ 37/63としました。 しかし、解答は109/126となっていました。 この問題文からは、青球を取り出さない場合を考えるようには思えなかったのですが、普通なら青球を取り出さない場合を踏まえて計算するべきなのでしょうか?

  • 確率

    赤球5個、白球4個、青球3個が入った袋から、無作為に4個の球を取り出す。このとき、4個の中に赤球、白球、青球の全てが含まれる確率を求めよ。 という問題なんですが、全事象は12C3(=495)でよいと思うのですが、場合の数を5*4*3*(12-3)(赤から1個、白から1個、青から1個、そして残った9個から好きなものを一つ)としたのですが、間違いでした。この考えでは何がマズかったのでしょうか?

  • 赤球・白球の確率の求め方

    「赤球2個、白球6個の入っている袋と、赤球3個、白球9個の入っている袋からそれぞれ2個ずつの球を同時に取り出すとき、赤球が合計3個含まれる確率」 を求めたいのですが、考え方がわからなく行き詰っています。袋が1つしかない問題は解けるのですが、袋が2個になるとわかりません。よろしくお願いします。

  • 反復試行の確率

    赤球1個と白球2個と青球3個が入った袋から1個の玉を取り出し、色を調べてからもとに戻すことを5回行う。この時、赤球が1回、白球が2回、青球が2回出る確率を求める問題です。答えは5/36なんですが、解き方がわかりません。教えてください。