• ベストアンサー

命題の証明

x、yがともに正の数であり、x^2+y^2≧4⇒x≧√2またはy≧√2 であることを、対偶を使わずに、この命題が真であることを証明するには、どうしたらよいですか? いろいろ考えたのですが、x^2+y^2≧4は、(x+√2)(x-√2)+(y+√2)(y-√2)≧0でることを利用するのかな・・・、さらにx≧√2またはy≧√2が、思うように理解できないのでうまく進みません。「または」これが意味することは、少なくとも片方がみたいな感じだったと思うんですが、よく理解できません。いつもいつもすいませんがよろしくお願いいたします。 すいません。

質問者が選んだベストアンサー

  • ベストアンサー
  • bbdog
  • ベストアンサー率15% (37/240)
回答No.2

間違っているかもしれませんが.... y≧√2としたとき X^2+√2^2=4 X^2+4=4 X^2=0 X=0 X≧√2としたとき Y^2+√2^2=4 Y^2+4=4 Y^2=0 Y=0 よって x≧√2またはy≧√2とき x^2+y^2≧4となります。

noname#160566
質問者

お礼

ありがとうございます!!!!!!

すると、全ての回答が全文表示されます。

その他の回答 (1)

noname#86290
noname#86290
回答No.1

図示すれば?

noname#160566
質問者

補足

図示って、どう書けばいいかわかりません。

すると、全ての回答が全文表示されます。

関連するQ&A

  • 命題の証明。

    参考書を開いたりなどしたのですが、中々理解することが出来ません。 以下の問題の解説をしていただけないでしょうか、、 (1) |x-1|>2 または |y-2|>3 ならば、 9x^2 + 4y^2 - 18x - 16y > 11 が真であることを証明せよ。 (2) (1)の命題の逆、裏、対偶をつくり、それらの真偽を理由をつけて述べよ・ 申し訳ありませんが、よろしくお願いいたします。

  • 命題の証明

    教科書の復習で、練習問題を解いてますが、解けない問題があるのでお願いします。 x,yは実数とする。対偶を考えて、次の命題を証明せよ。 x+y>0⇒「x>0またはy>0」 という問題で、 この命題の対偶は次の命題である。 x+y≦0⇒「x≦0かつy≦0」 と、ここまでは書いたのですが、ここからどうすればよいのか・・・。

  • 命題と証明

    x,yは実数とする。次の命題の真偽を調べよ。 また、その逆・裏・対偶を述べ、それらの真偽を調べよ。 (x-3)(y-6)=0ならば「x=3またはy=6」 こういった問題なのですが、ほとんど分からなくて・・・。 できれば私にも理解しやすいように 証明など詳しく書いていただけると本当に助かります。 よろしくお願いします。

  • ある命題の真偽の理解につきまして

    x, y を実数とするとき、命題「xy != 6 ならば x != 2 または y != 3 である」は、対偶を考えれば、真であることは即座に理解できるのですが、対偶を考えずに表記の命題を直接、直感的(もしくは論理的)に理解したいのですが、どうも頭の中がすっきりしません(記号 != はノットイコールの意味で用いています)。 添付図のように xy = 6 の双曲線を書いて、「xy != 6 ならば」、「(x, y) = (2, 3) を満たしさえしなければよい」というのは納得できるのですが、表記の命題を見た瞬間に直感的に理解したいのです。 当たり前のことと言えば、当たり前のことなのですが、どうもモヤモヤが残っています。 ド・モルガンの法則を習ったときのように、一方は直感的に理解できるのに、他方は直感的に理解できないもどかしさを感じています。 雲を掴むような質問でたいへん恐縮ですか、表記の命題を即座に直感的に理解できる方は、どのような感覚(もしくは、その背景にある論理的思考?)で理解されているのでしょうか? なにかしらアドバイス頂けないでしょうか? よろしくお願いいたします。

  • x>0 またはy>0 の図示

    こんにちは。命題x+y>0 ならばx>0またはy>0の証明ですが,対偶をとり x<=0かつy<=0ならばx+y<=0は明らかに真なので,対偶が真であるので 元の命題の真である。 なんですが、グラフで考えたときに、問題の命題のx+y>0はy>-xで描けますが x>0またはy>0ってどこなんでしょうか。

  • 論理と集合

    すべての正の数xに対してa+x>0が常に成り立つならばa≧0 この命題を対偶を用いて証明せよ この問題なんですが答えが真になることはわかるけど対偶がわかりません 対偶がわかるかたおしえてください! よろしくおねがいいたします

  • 背理法による証明と対偶による証明法について

    自分の使っている参考書に 「対偶による証明法も一種の背理法と考えることができる。 命題p→qが真であることをいうために ̄q(qでない)と仮定して ̄pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも ̄qならば ̄pとは文字通り、これは対偶のことでこの対偶が真といえたから自動的に命題が真といってもいい」 と書かれているのですがいまいち意味がわかりません。 どういうことなのでしょうか? 数1の内容なのですがあまり数学が得意ではないので簡単に教えていただけると助かります よろしくお願いします。

  • 命題の真偽(逆、裏、対偶)

    『𝓍, yは実数とする。𝓍 ≠ 0 → 𝓍y ≠ 0の命題の真偽を調べよ。また、その逆、裏、対偶を述べ、それらの真偽を調べよ。』次のように考えました。正解かどうか教えてくれませんか。間違いなら理由などコメントしてください。お願いします。 逆) 𝓍y ≠ 0 → 𝓍 ≠ 0 真 裏) 𝓍 = 0 → 𝓍y = 0 真 対偶)𝓍y = 0 → 𝓍 = 0. 偽(反例:y=0, 𝓍=1) したがって命題は偽である。

  • 対偶を示して証明する背理法について

    対偶証明法も背理法の一種と考えることが出来る。 という考え方があるのですが それで、その理由について 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 命題を背理法で証明するために「pならばq」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真となる。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。」 という説明があるのですが 自分は 対偶証明法は 対偶を示して証明する形式の背理法と 「対偶を示して証明する」という流れが同じなので 対偶証明法も 見方によって 「対偶を示して証明する形式の背理法」と考える事が出来るので そういう意味で 「対偶証明法も背理法の一種と考えることが出来る」 ということになる、と 理解したのですが この考え方は間違っているのでしょうか?

  • 命題 裏の真偽

    数学Iで与えられた命題「xy=0 ならば x=0 かつ y=0」…(△)は偽である。 (△)の逆「x=0 かつ y=0 ならば xy=0」……真である。 (△)の裏「xy≠0 ならば x≠0 または y≠0」…真である。 (△)の裏は(△)の逆の対偶ということで真とされて参考書の答えになっていたのですが、 この(△)の裏は偽だと思います。反例 x=1,y=0のときxy=0 になってしまいます。 参考書の間違いなのか、私の考え方が間違っているのかコメントください。

このQ&Aのポイント
  • スーパーセキュリティの期限切れのメッセージがPCに出ているが、延長ボタンを押しても反応がない
  • スーパーセキュリティのパソコン全体の検査や脆弱性検査は出来ているが、セキュリティは継続しているのか心配
  • スーパーセキュリティの延長は超ホーダイであったため、安心して利用しているのか不安
回答を見る