• ベストアンサー

0の0乗を1と考える

masa2211の回答

  • masa2211
  • ベストアンサー率43% (178/411)
回答No.1

>べき乗の定義を、次のように考えていることになる。 >x^0=1, >x^(n+1)=x^n*x (n>=0). xが実数で、nがゼロまたは自然数、ですよね? それでは、 x^-1 のような演算が、X>0の場合にも未定義となってしまいます。 x^(n+1)=x^n*x は、x=0の例外を認めれば、nが負でも成立するのに、 x=0を例外にしたくないばかりにn<0を定義から外しています。 いくらなんでも、べき乗の定義が身勝手すぎるでしょう。

fusem23
質問者

お礼

指数が負の場合には、次のように定義します。 x^(-n)=(x^(-1))^n ただし、x^(-1)*x=1 となる逆元と言われるものが存在する場合です。 x=0 については、逆元が存在しないため、指数が負では未定義となります。 なぜこうなっているかと言うと、べき乗を逆元が存在しない場合も定義可能とするためです。 実数で考えると、0 以外の数に逆元(逆数)が存在するのは当たり前なんですが、それが存在しない場合がある行列などに拡張するためには、一旦定義をこのようにしておいて、必要に応じて負の場合を定義するということが行われます。 ありがとうございました。

関連するQ&A

  • 0の0乗は0、にしたくない

    再び帰ってきました。 迷惑と感じる人は、スルーしてください。 Wikipediaでの議論について、気になったことを質問します。 参考:0の0乗のノート 質問は、以下のことです。 総乗:Π[n=1,y]x_n これの帰納的な定義が、x_n=xならば、x^yの定義と同じに思えます。  p_1 = x_1  p_n+1 = p_n * x_n+1 (+1は添字) そして、ΠΦ=1と記述されています。p_0に相当します。  p_0 = 1 つまり、x_n=0,y=0とすれば、総乗で0^0に相当する値は1です。 ほぼ同じ定義に対して、一方では未定義とし、もう一方では1であるとしています。 この違いは、どこからくるのでしょうか? 理由の一つは、x^yに連続性がないためであることは分かるのですが、定義が同じなら、結果にも同じことを期待するのではないですか? なお、0^0=0を否定するネタとして考えているので、0^0=1を主張する意図はありません。 0^0は未定義か1であり、状況や利便性で使い分ければ良いと考えています。

  • 0の0乗は1、にしたい

    0の0乗の値について、過去に色々な質問がありますが、結論としては不定というのが多いみたいです。 でも、素朴な疑問として、1として問題があるのかな、と思いました。 そこで、べき乗の定義を  x^0=1  x^n=x^(n-1)×x (n≧1) としてしまえば、0^0は当然1になります。 この定義の仕方には、問題があるのでしょうか?

  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

  • 0の0乗=1……かな?

    0の0乗はいったい何なのかを考えていたら、ある本の中にあった、lim(n→∞)n^1/n=1の証明を見て少しひらめきました。   f(x)=(1+x)^n-(1+nx) という関数はx>0で微分可能ですから。   f'(x)=n(1+x)^n-1-n=n{(1+x)^n-1-1}>0  である事がわかります。すると、f(0)=0であり、f(x)はx>=0で増加するから、x>0のときf(x)>0で、つまり   (1+x)^n>(1+nx) ここで、x=1/√nとおくと   (1+1/√n)^n>1+√n>√n この式の左辺と右辺を2n乗すると   (1+1/√n)^2n^2>n^n ここでn>1ならn^n>1ですから   (1+1/√n)^2n^2>n^n>1   さらにlim(n→0)とすると   (1+1/√n)^2n^2→1 となり、n^nは1で両側から挟み撃ちにされるので   lim(n→0)n^n=1 つまり、0の0乗は1ってことにならないでしょうか。長々とした証明でした。読んでくださってありがとうございました。          

  • 階乗 総乗 

    階乗と総乗って同じことなのでしょうか? 違いはありますか? 数学的に厳密な定義は分かりませんが、 (nは自然数とする) 階乗:n!=n×(n-1)×・・・×2×1 総乗:Πkt[t=1~n]=1×2×・・・(n-1)×n と認識しています。 掛け算の順序が逆のように考えたのですが、 上の二つは同じものとして扱われていますか? 以上、ご回答よろしくお願い致します。

  • カイ二乗分布の証明

    一般に,X1,X2,・・・,Xnが独立にN(0,1)に従うとき, Tn=1/{2^(1/2)・Γ(n/2)}・Z^{(n-2)/2}・e^(-z/2) に従うカイ二乗分布の式Tn(Z)が任意のnで成立することを数学的帰納法をつかって証明したいのですが, どうにもわかりません. n=1のときは普通に簡単なのですが, nで成立すると仮定して n+1を証明する部分ができません. どなたか教えていただけないでしょうか.

  • 自然対数を用いた1.0005の5乗の概算値の導出法

    自然対数を用い、対数や逆対数の表を引かずに1.0005の5乗の概算値を求めよという問題についてです。  (答えは、xの値が非常に小さいときの公式 (1+x)^p=1+px より、1.0025であることはわかるのですが、下記に書きましたが自然対数をどのように使うのか、わかりそうでわからずモヤモヤしております。) 下記についてどなたかわかる方ご教示お願い致します。 (社会人ですが高校生の数学レベルでお願い致します。) 上記は、R.P.Bauman 熱力学序説 東京化学同人 1968.の付録「基礎的な計算法」章末問題にあるものです。 「基礎的な計算法」の中の、自然対数についての説明は下記の通りです。 ----------------- 『数eはxの小さな値に対する関数(1+x)^(1/x)の極限値として定義される。それゆえ、xの十分小さな値に対して(1/x)ln(1+x)=ln e = 1 すなわち ln(1+x)= x である。』 ------------------ これからN=1.0005の時、ln N=0.00050はわかります。そして、1.0005の5乗は(1+0.0005)の5乗として、多分、1の5乗+0.0005×5なのだろうと思います。ですが、自然対数を用いて「(1+0.0005)の5乗」=「1の5乗+0.0005×5」がどのように導けるか、その導出がわかりません。 また、微分を使った 「1>>xの時の (1+x)^p=1+px」の 高校生向けの証明はみつかりましたが、自然対数の場合どのように概算値を導いたら良いのでしょうか。証明(といっていいのかわかりませんが)を教えてください。

  • Y=Xの(1/2)乗の微分について。

    Y=Xの(1/2)乗 の微分は、 『Y=Xのn乗の微分公式Y'=nXの(n-1)乗』を用い、 Y'=(1/2)Xの(-1/2)乗になります。 ところで上の微分公式について、nが自然数の時は微分の定義に式を入れ、展開していって理解ができますが、nが自然数以外(分数)のときでもどうして成り立つかを、おしえて下さい。 ※電気関係の試験勉強のため、数学を復習し直している者です。学校では、何の疑問も無かった(もしかすると疑問があっても考える余裕が無かった)箇所で詰まってしまって・・・

  • 5の-2/3(マイナス3分の2)乗とは・・・?

    こんにちは、数学が得意でないので、よろしくおねがいします。 A)5の2/3(3分の2)乗は、5の2乗の3乗根 B)5の-1乗は1/5 ここまであってますか? 指数の計算方法で(n^2)^3は2*3=6 よってn^6と計算しますので そうすると5の-2/3(マイナス3分の2)乗とは (1)AのB乗または (2)BのA乗ということで いいんでしょうか? しかし(1)と(2)は同じ値になりますか? 考え方のどこが変なのでしょうか?

  • 0の0乗の記述

    wikipedia によると、 > x ≠ 0 のとき x^0 = 1 であるから、0の0乗を 1 と定めることが自然であると考えられる > 一方、n が正の整数のとき 0^n = 0 であるから、0の0乗を 0 と定めることも自然であると考えられる。 > このように、こちらを立てればあちらが立たず、という状況であり、全てに都合の良い定め方はない。 が定義されない理由の一つとされる。 ところが、  0^y = 0 (y ∈ N) という条件の下で 0^y という関数を考えた場合、  0^0 = 0 という結論は得られなかった。(詳細は http://okwave.jp/qa/q8587518.html を参照。これに対する誤りの指摘は出ていない。) つまり、  0^0 = 1 と定めると両方の条件を満足するため、上記の説明は間違いだと思われます。 この文を削除するつもりなのですが、何か他に考慮すべき点はありますか?