• 締切済み
  • すぐに回答を!

大学数学の偏微分に関する問題です。どなたか回答よろしくお願いします<(_ _)>

大学数学の偏微分に関する問題なのですが、 次の関数は原点で偏微分可能であるが、偏導関数は原点で連続でないことを示せ。 f(x,y)= xysin1/√(x^2+y^2) (x,y)=(0,0)以外     0 (x.y)=(0,0) この関数が原点で連続可能で偏微分も可能であることは明らかなのですが、偏導関数そのものの連続性とのつながりがよくわかりません。。。どなたか回答をよろしくお願いします<(_ _)> 

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数345
  • ありがとう数2

みんなの回答

  • 回答No.1

偏微分自体はできました?

共感・感謝の気持ちを伝えよう!

質問者からの補足

はい、できてます。

関連するQ&A

  • z = x^y の偏微分

    z = x^y の偏微分 こんにちは。 数学の偏微分に関しての質問です。 z = x^y を偏微分せよ という問題について教えて欲しいのです。 ・偏微分可能であることを示す ・偏専関数を求める これは例題でやったのですが、実際に偏微分するときどう手をつければいいのかわからず…。 偏微分というのがどういう事なのかをまず理解してないのも一つなのですが。 実際に解答するならばどう答えればいいのでしょうか。 宜しくお願いします。

  • 大学数学の全微分可能性に関する質問です、どなたかよろしくお願いします

    大学の全微分に関する問題で 次の関数は原点で全微分可能でないことを示せという問題なのですが。 f(x)= x^2y/(x^4+y^2) (x,y)=(0,0)以外のとき     0  (x,y)=(0,0)のとき 原点における偏微分可能性と連続性を考えたところ、 関数の連続性に関しては y=x^2 と y=x にそった極限の値の違いから連続でないことはわかったのですが、 偏微分可能性についてがどうしてもよくわかりません。普通に偏微分したら原点ではできないとは思うのですが、 そもそも連続じゃないのに偏微分可能なんてことがあるのだろうかなどと考えはじめたら混乱してしまいました。。。 この方法で示せるのかも含めてどなたか回答をよろしくお願いします。<(_ _)>

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • 微分方程式の偏微分問題について

    微分方程式の偏微分問題について 大学で微分方程式の授業を履修しているのですが、指定された問題がまったくわかりません 問u0>0,p>1とする。次の1階単独ODEの初期値問題について、(u0の0は小文字でユーゼロです) du/dt=u^p (t>0) u(0)=u0 u(t)が発散する時刻をTmaxとするとき、解u=u(t) (0<t<Tmax)を求めよ という問題です。 偏微分の計算の説明を少しされただけなので、このような文章問題はどうすればいいのかまったくわかりません。 一応この問題の前に 『1階単独ODEの初期値問題と局所解の一意存在定理』 2変数関数f(x,y)は点(x0,y0)の近くで偏微分できて、さらにその偏導関数fx(x,y),fy(x,y)は連続とする(これは短く「点(x0,y0)の近くで連続微分可能である」という)。そのとき、次の1階単独ODE y´=f(x,y), (y=y(x);unknown) について、y(x0)=y0をみたす解がx=x0の近くでただ1つ存在する という定理が書いてありましたが、説明されていないので自分で読むだけではまったく理解できませんでした。 明日までなので焦っています。 どなたか問題を解いて下さる方はいらっしゃいませんでしょうか?

  • 偏微分の問題です。

    偏微分の問題です。 nを4以上の自然数とし,n次元ユークリッド空間の部分集合Cを以下で定義する。 C={(x_1,・・・・,x_n);sin(πx_1)+....+sin(πx_n)=0,sin(πx_1)+sin(2πx_2)....+sin(nπx_n)=0} このとき原点(0,...,0)の適当な開近傍において,x_n-1,x_n が x_1,x_2,...x_n-2の関数として あらわせることを示せ。 という問題です。次の小問としてその関数を偏微分せよとあるので,ある程度具体的な形であらわすのだと思うのですが わかりません。 よろしくお願いします。 πは円周率のパイを表します。見にくくて申し訳ありません。

  • 偏微分についてです

    Y=F(K,L) はKとLに関して一時同次関数である。 y=Y/L k=K/L としたとき y=f(k)と書くことができる。 (d)Y/(d)K=f'(k) (d)Y/(d)L=f(k)-kf'(k) となる。《 (d)は偏微分記号ラウンドディを表す》 以上ですが、どうしてKとLでそれぞれ偏微分したものが 上のようになるのかがわかりません。 どなたかよろしくお願いします。

  • 偏微分について

    偏微分について R^2上C^1級関数f(x,y)があるとする。 R^2上任意の(x,y)でx,yそれぞれの偏微分が0であれば、R^2上、fは定数であることを示せ。 そうなることはわかるのですが、どうやって示せばいいのかよくわかりません。 よろしくお願いします。

  • 偏微分の解説をお願いします。

    偏微分の解説をお願いします。 独学で数学をやっているのですが難しいです。 次の関数を,x; y についてそれぞれ偏微分せよという問題です。

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • 偏微分の問題に関する質問です。fはC^2級とします。関数u=f(sqr

    偏微分の問題に関する質問です。fはC^2級とします。関数u=f(sqrt(x^2+y^2))とし、また r=sqrt(x^2+y^2)とおきます(r>0)。このとき、uをx,yで偏微分したときの1次、2次の偏導関数はそれぞれどのようになるでしょうか?