• 締切済み
  • 困ってます

量子力学(水素原子模型について)

確認なのですが、水素原子模型で 2px軌道の波動関数は、磁気量指数m=1とm=-1 との重ね合わせで表されますよね? だから、2px 軌道は角運動量演算子 Lz の固有状態ではないということでいいんでしょうか? 今まで 2px 2py 2pz が m = 0,1,-1 の3つと対応していて、2p軌道が磁気量指数の固有関数みたいに思っていたのですが・・・。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数641
  • ありがとう数1

みんなの回答

  • 回答No.1
  • nomercy
  • ベストアンサー率66% (12/18)

>確認なのですが、水素原子模型で 2px軌道の波動関数は、磁気量指数m=1とm=-1 との重ね合わせで表されますよね? >だから、2px 軌道は角運動量演算子 Lz の固有状態ではないということでいいんでしょうか? その通りです。 水素原子一つだけなら、Lzの固有状態を選ぶのが便利なように感じると思いますが、例えば結晶中では対称性が低くなるので、Lzの固有状態ではなく、px,py,pz という軌道を用いるのが便利になります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 演算子 (量子力学)

    演算子の計算問題で悩んでいます。 Px = (-i*h)∂/∂x, Py = (-i*h)∂/∂y, Pz = (-i*h)∂/∂z Lx = y * Pz - z * Py Ly = z * Px - x * Pz Lz = x * Py - y * Px [A,B]= AB -BA のとき [Lx,Ly] = i*h*Lz を証明せよ。ただし、[x,Px]=[y,Py]=[z,Pz]=ih,[x.Py]=0 が成立することは証明済み。 私の指針ですが [Lx,Ly]*ψ (ψは任意の波動関数)  を普通に展開して… ( yPz*zPx - zPy*zPx + xPy*zPz -zPx*yPz + zPx*zPy - xPz*zPy) * ψ になり ここから 計算が進みません。 どなたか分かる方がいらっしゃったらアドバイスをいただきたいです。 お願いします

  • 原子の安定性について

    フッ素原子とネオン原子では電子の数が一つ違うだけで安定性がまったく違うという認識なのですが、電子の軌道を考えたときに2p軌道に(px,py,pz)がありそのpzにプラススピンの電子のみかプラス・マイナススピン両方入ってるかの違いでどうして安定性が変わるのでしょうか。 ※波動関数を考えると、かわりがないように思えるのですが、単純に考えすぎていたらすみません。

  • 水素原子の波動関数について

    水素原子の波動関数について (以下、波動関数Φnlm(r,θ,φ)のことを、Φnlmと書かせていただきます) 「Φ+=1/√2(Φ200+Φ210) が、水素原子の波動関数であることを示せ」という問題がわかりません。 問題文に与えられている式は (1)L^2Φnlm=h^2l(l+1)Φnlm (2)LzΦnlm=hmΦnlm (hはディラック定数) (3)L^2およびLz演算子の具体式 (4)Φ200およびΦ210の具体的な数式 (5)Φnlmに対応するエネルギーの式 です。 Φ+に演算子L^2をかけると、Φ200の項が消えて (1)は成り立ちませんよね? Φ+は一体どの軌道を表し、それをどのように示せばいいのでしょうか。 宜しくお願い致します。

  • sp3混成軌道について

    φ1=1/2(φs+φpx+φpy+φpz) φ2=1/2(φs+φpx-φpy-φpz) φ3=1/2(φs-φpx+φpy-φpz) φ4=1/2(φs-φpx-φpy+φpz) というsp3混成軌道の導出がわかりません。どうやったらこの波動関数に導けるのでしょうか??よろしくお願いします。

  • 量子力学の規格化の問題

    0 < x < a の井戸型ポテンシャルの中の波動関数 ψ(x) = C(1-cos(4πx/a)) において、 1)この波動関数を規格化し、規格化因子Cを求めよ 2)規格化された波動関数をエネルギーの固有関数 φn(x)=√((2/a)sin(nπx/a)) を使ってψ=Σ[i=1,n]c(i)φ(i)と展開したときのc(i)を求めよ 3)E=E1,E2,E3が測定される確率を求めよ 1)は自力で解いてC=√(2/3a)はでたのですが、 2)以降の解き方が分かりません。どなたかよろしくお願いします。

  • 量子力学

    物理でこんな問題が出たんですが、誰かどうやって解くか分かりますか? 「電子の重ね合わせの波動関数が次のように表されたとします。(1次元)         Φ=Φ1+2Φ2-2Φ3 この重ね合わせの状態のエネルギーの期待値を求めなさい。」 この問題を解くにはまず規格化するんですよね? 規格化すると Φ=1/3(Φ1+2Φ2-2Φ3)  になりました。 で、このあとどうしたらいいか分からないんですが、誰か分かったら教えてください。

  • 量子力学の問題

    ハミルトニアンが H=P^2/(2m) -FQ [P:運動量演算子 m:質量 F:一定の力 Q:位置演算子] であたえられるとき運動量表示のシュレディンガー方程式を書き下し,その波動関数Φ(p)を求めよという問題がわかりません。波動方程式は、               {p^2/(2m)-Fih d/dp}Φ=EΦ  [i:虚数 h:ディラック定数 エイチバーの代わりにhで表記します d/dp:pでの微分] でよいのでしょうか。 回答よろしくお願いします。

  • 量子力学の基礎的な質問

    2つ質問させてください。 1.波動関数Ψを考えます。 普通|Ψ|^2=1となるように規格化すると、Ψの要素の一つをΨ_nとした場合、|Ψ_n|^2が確率としてでますよね。 もし、|Ψ|^4=1として規格化すると|Ψ_n|^4が確率になるんですか? 2.<Ψ(0)|Ф(t)>≠0の場合(カッコ内は時間)、この式の解釈としては「Ψ(0)の波動関数は時刻t秒後にФ(t)となる波動関数とその他なんらかの波動関数の重ね合わせである」 またはΨ(0)、Ф(t)に対する固有値をA,Bとすると「Aという固有値がt秒後にBという固有値に変化する可能性がある」ということでしょうか? 最近よくわからなくなってきてしまい質問しました。よろしくお願いします。

  • 量子力学の初歩的な問題です

    量子力学の初歩的な問題です 1.調和振動子の固有エネルギーを記せ 2.いわゆる箱型ポテンシャルの固有波動関数を記せ という問題を出されて困っています。 参考になるページかできれば答えを教えてもらえないでしょうか

  • 量子力学の問題

    -L/2<=x<=L/2 (L>0)における質量mの自由粒子の量子力学的運動を考える。 波動関数は周期的境界条件を満たすとする。 運動量の間隔dpの中にある運動量の固有状態の数はほぼいくらになるか? ただし、Lは十分大きく、したがってdp>>2π(h/(2πL))であるとする。 この問題が良くわかりません。Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、固有状態の数はどのようにもとめたら良いのでしょうか?どなたかよろしくお願いします。