• ベストアンサー

1≠0.999・・・となる例を考えたのですが、矛盾点が見つからず困っています。

agthreeの回答

  • agthree
  • ベストアンサー率72% (233/323)
回答No.7

まず最初にANo.1さんのご意見の補足を。 質問者さんの式のカッコがないということですよね。 きちんと書くと、 An=(10^n-1)/10^n=10^n/10^n-1/10^n=1-1/10^n というご指摘だと思います。 それはそうと本題ですが、 10^∞=10^∞-1 という式ですが、無限大というのは無限に大きいので有限の数を引いても無限大なわけです。ですから、10^∞も10^∞-1も同じように無限大であるので、10^∞を左辺に移項して消去するというところが矛盾の元になると思います。

関連するQ&A

  • 不等式の証明

    n を2 以上の自然数とするとき、次の不等式を証明せよ。 ( 1 / 1^2 ) + ( 1 / 2^2 ) + ( 1 / 3^2 ) + ・・・・ + ( 1 / n^2 ) < 2 - ( 1 / n ) ( I ) n = 2 のとき ( 左辺 ) = ( 1 / 1^2 ) + ( 1 / 2^2 ) = 1 + ( 1 / 4 ) = 5 / 4 ( 右辺 ) = 2 - ( 1 / 2 ) = 3 / 2 = 6 / 4 ∴ ( 左辺 ) < ( 右辺 ) ( II ) n = k ( k ≧ 2 ) のとき成立を仮定 ( 1 / 1^2 ) + ( 1 / 2^2 ) + ・・・・ + ( 1 / k^2 ) < 2 - ( 1 / k ) 両辺に 1 / ( k + 1 )^2 を加えて ( 1 / 1^2 ) + ( 1 / 2^2 ) + ・・・・ + ( 1 / k^2 )+ { 1 / ( k + 1 )^2 } < 2 - ( 1 / k ) + 1 / ( k + 1 )^2 この後どうやって証明するかわかりません。教えてください、お願いします。

  • 数Bの問題です。

    不等式の証明 nが2以上の自然数であるとき、次の不等式を数学的帰納法によって証明せよ。 3^n>2n+1 証明) (1)n=1のとき成り立つことを示す より、この場合最小は2なので n=2 のとき (左辺)=3^2=9、(右辺)=2・2+1=5 より成り立つ (2)n=Kのとき成り立つことを仮定し、n=K+1のときも成り立つことを示す より K≧2 のとき、n=Kのとき成り立つと仮定すると 3^K>2K+1 (―(2)) n=K+1 を代入 3^(K+1)>2(K+1)+1 (―(3)) を示せばよい。 (2)の両辺に3をかけると、 ←☆ 3^(K+1)>(2K+1)×3 3^(K+1)>6K+3 (―(2)') (3)より 3^(K+1)-{2(K+1)+1}>(6K+3)-{2(K+1)+1}=4K>0 ←★ よって 3^(K+1)>2(K+1)+1 n=K+1のときも成り立つ つまり すべての自然数nについて 3^n>2n+1 が成り立つ ■ ☆と★がの所が分かりません。 ☆は、3をかけて3^K>2K+1 (―(2)) を3^(K+1)>6K+3 (―(2)') とした意味が分かりません。 3^(K+1)>2(K+1)+1 (―(3)) を示すのだからこれをどうにかするのではないのですか? ★は、見てみると(3)と(2)'が使われているように見えるのですが、訳分かりません。どういうことですか? よろしくお願いします。

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • √2が無理数であることの証明について

    √2が無理数であることの証明について 一つ疑問が生じまじた。 背理法を用いて、√2が有理数であると仮定すると、 √2=q/p (p,qは自然数)とおけるから 両辺二乗して 2=q^2/p^2 ⇒2*p^2=q^2 ・・・A ここから無限降下法を用いて矛盾を導くのが一般的な解法であると思うのですが、 Aの段階で明らかに(明らかでなくとも、証明すれば)右辺は平方数で左辺は平方数ではありません。 これは矛盾ではないのでしょうか? 例えば、平方数の約数の個数は奇数、非平方数の約数の個数は偶数ということをまず示せば、素因数分解の一意性に矛盾することは言えますが、そのような補題なしに「非平方数=平方数」は矛盾と考えてはいけないのでしょうか? 矛盾と考えていいのであれば一般の非平方数nに対して√nが無理数であることの証明がすごく簡単になるのですが・・・ 解説お願いします。

  • 数学で矛盾?が生じました

    数学で矛盾?が生じました 恐らく自分の勘違いによるものですが、自分でも解決できなかったので質問させていただきます まず n!=n*(n-1)*(n-2)*...*1より n!=n*(n-1)!を得ます また 0!=1をn!=n*(n-1)!に代入すると 1=0*(-1)! 1=0 この等式が矛盾していることは視覚的に捉えることができます なぜこうなるのか考えたのですがはっきりとした答えが出ません この等式の間違いをご教授下さい

  • 数学的帰納法について

    すべての自然数 n について  1+3+5+ … +(2n - 1)=n2 …(1) が成り立つことを証明したい. (I) n=1 のとき,左辺=1,右辺=12=1 だから,(1)は成り立つ. (II) n=k のとき,(1)が成り立つと仮定すると 1+3+5+ … +(2k - 1)=k2 …(2) (2)の両辺に 2k+1 を足すと 1+3+5+ … +(2k - 1)+(2k+1)=k2+2k+1=(k+1)2 …(3) (3)はn=k+1 のときも成立することを示している. (I)(II)より,すべての自然数 n について(1)が成り立つ. n=kの時成り立つと仮定すると・・・とあります。 n=k+1 のときも成立することを示している・・・とあります。 確かにそうなのですがn=kは仮定ですよね?仮定したものにさらに1をプラスして成立することを示してどうして証明になるのか?納得できないのです。よろしくお願いします。

  • 矛盾律の絶対性について

    私自身は数学について表面的な理解しか持っていません。ですが、気になることがあるのでここに質問させて頂きます。 数学(すべての学問?)は公理という証明不可能な前提の上に構築されたものだと理解しています。なので、数学において絶対確実な真理というものは存在せず、あくまで仮定のうえでの体系であるということになると思います。 一方で矛盾律という考え方があります。これは公理とどのような関係にあるのでしょうか?私にはこれは公理とは関係なく犯すことのできないものであるように思えるのですが・・・。それとも、矛盾律も何らかの公理の上に成り立っているのでしょうか?もしくはこれ自体が公理のような性格のようなものなのでしょうか? 質問は以上です。御教授お願い致します。

  • 数学的帰納法

    nは自然数とする。次の等式が成り立つことを証明せよ。 x^(n+2)+y^(n+2)=(x^(n+1)+y^(n+1))(x+y)-xy(x^n+y^n)・・・(1) n=kのとき 上の等式にkを代入して成り立つと仮定する。(この等式を(2)とする) n=k+1のとき このとき(1)の右辺にn=k+1を代入すればあらわれる(x^(k+2)+y^(k+2))に(2)の右辺を代入するんじゃないか。 ぐらいしか思い浮かばないんですが、なにか策はありますか?

  • 集合と数学的帰納法

    1.平面上の点P(x,y)の集合A,Bを次のように定義する。 A={P(x,y)|x>0},B{P(x,y)|y≦-(x-k)^2+k かつ y≧kx-1} Bは空集合でなく、しかも B⊂Aであるためには、kはどんな範囲の値でなければならないか  = という問題です。わかりにくいやつは⊂の下に=がついたものです。 2.これは数学的帰納法の問題なのですが 数学的帰納法というのは学校で決まった形にあてはめるものだと 習いある程度お決まり文句がありそれはおぼえなければならないと 習いました。で、始めにn=1を代入して成り立つと証明し 次にn=kのとき成り立つと仮定してn=k+1の場合を考えるのですが これは右辺にk+1とする式をひとつ付け加えて左辺にそれと同じものを あてはめて解くというものだと自分では思っているのですがそれでは 解けません・・・ちょっと読解力に欠けているので 例題を出すので解き方を教えてください。 すべての自然数nに対して下の不等式が成り立つことを示せ。 1+1/2+1/3+1/4+・・・+1/n≧2n/(n+1) という問題です。このれいだいのさっきいった n=kを仮定してn=k+1のところを考えるところを教えてください

  • 等比数列の和の公式なんですが…

    等比数列の和の公式なんですが… 等比数列の公式の和の証明で、よくみるヤツが1つありますよね。 http://www5a.biglobe.ne.jp/~nozo-mu/touhiwa.html ←コレ この証明も理解しているのですが、僕の中でもう1つ証明があるんです。 この証明でいいのか気になって質問しました。その証明は以下の通りです。 まずはじめに恒等式を用意します。 1-r^n=1-r^n 左辺を因数分解して (1-r)(1+r+r^2+r^3+…+r^(n-2)+r^(n-1))=1-r^n 1≠rのとき両辺を1-rで割って 1+r+r^2+r^3+…+r^(n-2)+r^(n-1)=(1-r^n)/(1-r) ここで両辺にaをかけます。 a+ar+ar^2+ar^3+…+ar^(n-2)+ar^(n-1)=a(1-r^n)/(1-r)  …※ すると左辺は初項a,公比rの第n項までの等比数列の和となります。 よって※の左辺をSnとすると、 Sn=a(1-r^n)/(1-r)                      この証明は間違っているでしょうか。 間違っているのなら、その理由もお願いします。