コーシー列

Q(有理数全体の集合)の2つのコーシー列{an},{bn}について、    (1){an+bn}はQの中のコーシー列...

mmk2000 さんからの 回答

  • 2008/05/22 02:50
  • 回答No.2
mmk2000

ベストアンサー率 31% (61/192)

通常、こういう問題を証明するときはいきなり{an+bn}について考えるわけではなく、{an},{bn}がそれぞれコーシー列なので
lim[n,m→∞]|An-Am|=0
lim[n,m→∞]|Bn-Bm|=0

ここで、
0<|(An+Bn)-(Am+Bm)|
=|(An-Am)+(Bn-Bm)|≦|An+Am|+|Bn+Bm|(∵三角不等式)
これではさみうちをすれば(1)は解けるんではないでしょうか?
この回答にこう思った!同じようなことあった!感想や体験を書こう!
この回答にはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。
関連するQ&A
  • コーシー列 数学・算数

    Q(有理数全体の集合)の2つのコーシー列{an},{bn}について、   {an+bn}はQの中のコーシー列であることを証明せよ。 コーシー列の定義より |(am - an) + (bm - bn)| ≦ |am - an| + |bm - bn| までできたのですが、このあと『ε』と上の式をどうやっていけばいいのか分かりません。教えて下さい。 最初の方も間違っているのであれば、詳しく教えて欲しいです!お願いします。...

  • コーシー列について、質問です。 数学・算数

    コーシー列について、質問です。 参考書やネットを参考に解答を作成しましたが、どなたか、修正および補足などをお願いします。 特に、(2)です。 問.{an}をQの中のコーシー列とする。bn=an+1/3n(n=1,2…)とおくとき、次の問いに答えよ。 (1)「 {bn} はQの中のコーシー列であることを証明せよ。」 (1) m>nとします。 a_nはコーシー列なので m,n→∞のとき |b_m-b_n| =|{a_m+1/(3m)}-{a_n+1/(3n)}| ≦|a_m-a_n|+(1/3)|(m-n)/mn| =|a_m-a_n|+(1/3)|{1-n/m}/n|→0 となるのでb_nはコーシー列です。 1/(3n)は有理数なので、a_nが有理数ならばb_nも、b_n=a_n+1/(3n)より有理数である。 よってb_nもQの中のコーシー列である。 (2) 「{an} ~ {bn} (同値)を証明せよ。」 ※コーシー列{an}n=1~∞を単に {an} と表記 {an}n=1~∞ ~ {bn}n=1~∞ を示すには、lim{n→∞}(an-bn)=0を示せばいい。 ∀ε>0に対して、n≧1/3([1/ε]+1) ならば、 |(an-bn)-0|=|an-bn|=|an+1/{3n}-an|=|1/{3n}|=1/3*1/n≦1/3*3([1/ε]+1)<1/{1/ε}=εだから、 lim{n→∞}(an-bn)=0となります。 よって、 {an} ~ {bn} (同値)が証明された。...

  • コーシー列に関する証明問題 数学・算数

    問、{an}(n=1,2,…)をQの中のコーシー列とする。   bn=an+(1/2n) と定めるとき、   {an}~{bn} (n=1,2,…) (同値)であることを証明せよ。 という問題で、同値関係の推移律の証明を教えてください。 特に、任意のQの中の3つのコーシー列を{an},{bn},{cn}とした時、 任意の正の有理数εに対して、{an}~{bn}より、 N1<m,n ⇒ |(am-bm)-(an-bn)|< ε/2 とできる。 とありますが、なぜ、ε/2 になるのかわかりません。 よろしくお願いします。...

  • 実数のコーシー列の積 数学・算数

    有理数の数列A={an},B={bn} がそれぞれ実数a,bに収束する時、AB=an*bn はa+bに収束する事を言えというもんだいです。 定義『Sを実数のコーシー列{an}とし、anは実数aに収束し、もし正の整数rが与えられた時に、|an-a|<Φ(1/r) n>Nを満たすnが存在する場合、Sの極限はaと言える』 と式変形を使って、 |anbn-ab|=<|anbn-an*b|+|an*b-ab|=|an||bn-b|+|b||an-a|...(1)と変形したのですが、ここから先に行けません。何とかして(1)<Φ(1/r1)見たいな感じに出来れば、 abに収束が証明できると思うのですが。anは有界なので|an|=<M(Mは実数)とできる所までは分かりますがこのMの取り扱いと、|b|の取り扱いに 手間取ってます。どなたか分かる方教えてください。分かるようで分かんなくて困ってます。宜しくお願いします。...

  • コーシー列の定理についての証明 数学・算数

    お世話になります。 同値の定義を『2つのコーシー列{an},{bn}について与えられたrに対して、|am - bn| <1/r m.n>NになるようなNが存在する時、{an},{bn}は同値でありA二重波線Bと表すことが出来る。』とする時、 定理;Sが有理数のコーシー列で、しかもSが数列{(n,0)}と同値ではない時 1,0よりも大きい正の整数rが存在し、すべてのnについて 、SはTと同値で、tn>= 1/r もしくはtn<= -1/rを満たす、有理数のコーシー列 T={(n,tn)}が存在する。 2,上のtnについて、{(n,1/tn)}はコーシー列である。 1を証明しようとしたのですが、SがTと同値になるのは分かるのですが、どうやって、tn>= 1/r もしくはtn<= -1/rであることを証明すればいいのか分かりません。 2に関しては数列{(n,1/n)}が0に収束するを使いたかったのですが、どうやって書けば良いのか分かりません。 なるべくわかりやすく教えてください。宜しくお願いします。...

ページ先頭へ