• 締切済み

ε-δ論についての質問

(lim n→∞)n+7/2n+8=1/2 これをε-δ論で証明せよという問題なのですが 変形して 3-8ε/2ε<n N=[3-8ε/2ε]+1とする これを最初の式に代入して 3/2([3-8ε/2ε]+1)+8から 不等式を利用してまたnに戻す所の意味がわかりません。 3-8ε/2ε<n N=[3-8ε/2ε]+1とすると この場合N≧nですよね?

みんなの回答

  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.2

#1 補足。 まあ、 a(n) - 1/2 < ε を解いて n > (3 - 8ε) / (2ε) ならば a(n) - 1/2 < ε が成立。 故に N = [(3 - 8ε) / (2ε)] + 1 とおくと、 n>N ならば a(n) - 1/2 < ε が成立 でいいんじゃなのかなあ・・・。

全文を見る
すると、全ての回答が全文表示されます。
  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.1

a(n) = (n + 7)/(2n + 8) とおいて lim(n→∞) a(n) = 1/2 をε-δ論で証明しろってことは、 a(n) = (1/2) (n+7)/(n+4) > 1/2 より、 任意のε>0に対してある N が存在し、n>N ならば a(n)-1/2<ε が成立する ことを示せばよいのですよね。 ということは、その「ある N が存在し」の N を具体的に示せればよい。 そこで、その N を求めてしまえ、ということで、 a(m) - 1/2 < ε を m について解いてみると m > (3 - 8ε) / (2ε) なので、N = [(3 - 8ε) / (2ε)] + 1 としてやれば、N>(3 - 8ε) / (2ε) だから a(N) - 1/2 < ε であり、かつ、n>N ならば a(n) - 1/2 < ε が成立 というように、「ある N が存在して n>N ならば~」の N が存在することを示せた、ということです。 「 この場合N≧nですよね? 」 示すべき命題の 「 n>N ならば a(n) - 1/2 < ε 」 の "n" と、 具体的に N の存在を示すための式( a(n) - 1/2 < ε ) で使った n とを混同してしまったようですね。 ということで、上の説明では、a(m) - 1/2 < ε と、mを使ってみました。 回答になっていますか?

dakisini
質問者

お礼

ありがとうございます nを混合してたようです

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 極限の問題

    n→∞のときlim(n^2/2^n)=0を示せ。 この問題の解き方を教えていただきたいです。 3以上の自然数nに対して不等式2^n≧n^2/2を示せという問題があり、これは証明できました。上の問題を解く時にこの条件を利用するのでしょうか?ちなみにこの問題は「はさみうちの定理」を利用するのでしょうか?恥ずかしながら、解き方を忘れてしまいました。どなたかヒントを下さい。回答よろしくお願いします。

  • 極限の問題

    かなり基礎の問題だと思うんですが、解けません(;;) (1)lim(n+1)×(n-2)÷(n+3)  n→∞ (2)lim(n+1)÷(√2n+1)  n→∞ (1)(2)の極限がどうして∞になるのかわかりません。 わかりやすく解説して欲しいです。 (3)2のn乗>{n(n-1)}÷2 を用いて、    lim n÷2のn乗 =0  n→∞  を証明するのですが、解答を見ると、  2のn乗>{n(n-1)÷2} の式を変形すると、    2      n   --- > ---- > 0   n-1   2のn乗  と書いてあります。どうやって変形したのか途中の式を  教えてください。

  • 極限値問題

    極限値問題 lim[x→∞](1+(1/x))^x=eを使って、lim[x→-∞](1+(1/x))^x=e を示せという問題なのですが、どのように解けば良いのでしょうか? 以前、lim[n→0](1+n)^(1/n)=eの証明について質問させて頂きました。 証明は理解できました。 その時、lim[n→-0](1+n)^(1/n)=eも成り立つと言うご回答を頂きました。 (1/x)=nとおけば、lim[n→-0](1+n)^(1/n)と出来きます。 lim[n→+0](1+n)^(1/n)=lim[n→-0](1+n)^(1/n)がなぜ成り立つか証明 できませんので、教えて下さい。 感覚的には分かるのですが、式変形などで成り立つことが証明できないものでしょうか?

  • 「はさみうち」を使う問題

    数列{x_n}は、不等式 4x_n+1-3x_n<2 ・・・1 2x_n+1-x_n>2  ・・・2 を満たす。 (1)x_n+1-2<(3/4)^n(x_1-2)を示せ (2)lim(n→∞)x_nを求めよ ほかの「はさみうち」をつかう問題と似ているのですが不等式のタイプは解いたことがなく、(1)を数学的帰納法で示そうとしたのですが、うまく1の式を使えませんでした。 n=1のときは1の式を変形するだけでできたのですが n=kのときの仮定からn=k+1が成り立つことがうまく示せません。 それとも1,2の式から帰納法を用いずに変形して導くことも可能なのでしょうか? 回答いただければありがたいです。よろしくお願いいたします

  • 数学IIIのはさみうちの原理について質問があります。

    高校数学IIIの参考書(ニューアクション・東京出版)において、以下のような問題が出ていました。 lim(n→∞)n/2^nを求めよ。 この問題の解答が「n≧5のとき2^n>n^2が成り立つことを示す」となっていて以下数学的帰納法でこれを証明して、最後にはさみうちの原理を用いています。 またこの類題でlim(n→∞)n^2/2^nを求めよ。 の解答は「n≧3のとき2^n>n^3/6が成り立つことを示す」となっていて以下二項定理を使用しているのですが、解答(上記の「」内です。)で、なぜこのようにnの数値の範囲とnについての不等式が決定されるのかが分かりません。いったいどこからこのようなnの範囲と不等式が出てくるのでしょうか?他の参考書にも理由は掲載されていませんでした。 どなたか理由を教えて下さい。よろしくお願いいたします。

  • ∞*0はしてはいけないのでしょうか?

    タイトルのとおりです。 lim(n→∞) n{√(n^2+n)-n} を求めろという問題があるんですが n{√(n^2+n)-n} =n*n/n{√(n^2+n)-n} =n^2{√(1+1/n)-1} で答えは∞*0=0になると思ったら間違いでした。 解答の式変形も理解できるんですが、こっちの式変形もどこが悪いのかが分からなくて・・・

  • 不等式の証明問題!

    このあいだテストが返ってきて ノートにテスト直しをしているのですが、 不等式の証明の仕方がわからなくて困っています! χi>0(i=1,2,3,…,n)のとき、 不等式 1<χ1+χ2分のχ1 + χ2+χ3分のχ2 +…      + χn-1+χn分のχn-1 + χn+χ1分のχn<n-1 が成り立つことを説明せよ。(ただし、n≧3) この問題の証明の 仕方(答え)を教えてください! お願いしますっっ!!

  • 極限のときの式変形について

    lim[n→∞](n+1)^2+(n+2)^2+……+(2n)^2/ 1^2+2^2+……+n^2 の極限を求めよという問題です。 それで解答には (n+1)^2+(n+2)^2+・・・・・+(2n)^2/1^2+2^2+・・・・+n^2 ={1^2+2^2+…+(2n)^2}-(1^2+2^2+…+n^2)/1^2+2^2+・・・・+n^2 =1/6*2n(2n+1)(4n+1)-1/6n(n+1)(2n+1)/1/6n(n+1)(2n+1) と変形しています。 たぶん最後の式変形は数列の和の公式だなーという検討はつくのですが、2行目の式が何のためにどう変形したのかが理解できません。 解説願えませんか。 どうか、よろしくおねがいいたします。

  • アルゴリズムの計算量O(n)の証明

    O()ビッグオーダについての証明問題なのですが どうすればよいのかわかりません。どなたか教えていただけませんか? O(n*log n + n) = O(n*log n)を証明せよ f(n) ε O(n) f(n) > 0で、ある定数Cがあり ここでlim n→∞ f(n)/n ≦ C おそらく上を使うと思うのですが式変形を行っても 左辺-右辺で0にできません。ひょっとしたら はさみうち等を使うのでしょうか? よろしくお願いいたします。

  • 有界な単調数列の証明(再掲)

    こちらの皆様のご指導のもと、以下の単調数列の証明問題を解いてみました。 証明が変なところがあれば、ご指導よろしくお願いします。 【問題】 数列{ 1-(1/n) }/{ 1+(1/n} }[n=1,2,3,...]は 有界な単調数列であるか? 理由とともに、単調な場合には、 単調増加であるか単調減少であるかについても求めよ。 【証明】 まず、有界かどうかについて証明する。 n→∞とすると、 lim[n→∞] { 1-(1/n) }/{ 1+(1/n} } =lim[n→∞] (n-1+2-1)/(n+1) =lim[n→∞] 1-2/(n+1)=1 よって、有界。 つぎに単調増加について証明する。 (n-1)/(n+1) = (n+1-2)/(n+1) = 1-2/(n+1)と変形させることにより、 1より小さいことがわかる。 また、2/(n+1)は単減少であることより、-2/(n+1)は単調増加。 よって、1-2/(n+1)も単調増加であることが証明される。 ∴数列{ 1-(1/n) }/{ 1+(1/n} }[n=1,2,3,...]は、 有界な単調増加である。

鼻マスクの販売状況は?
このQ&Aのポイント
  • 鼻マスクの販売状況を知りたいです。
  • 鼻マスクは現在販売されていますか?
  • スギ薬局で鼻マスクを入手できるのでしょうか?
回答を見る