• ベストアンサー
  • 困ってます

置換積分法について

置換積分法についての問題で ∫sinAcosAdx=∫sin2A/2dx として積分するものがあったのですが、 ここで私は、(sinA)'=cosA より、sinA=U とおいて ∫sinAcosAdx=∫U*(U)'dx=∫Udu=U^2/2+C=(sinA)^2/2 としてしまいました。 答えのやり方はわかったのですが、なぜここで置換積分法を使ってはいけないのかよく分かりません。 その理由を教えていただけたらうれしいです。 よろしくおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数184
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

別に間違って無いと思いますよ。(最後に積分定数が抜けてしまっているのを除けば) ∫sinAcosAdx=∫sin2A/2dx = -cos2A /4 +C =(sinA)^2/2 - 1/4 + C =(sinA)^2/2 + C' 同じ答えですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 積分定数をC'にすれば結果は同じことだったんですね。 積分はいろいろとやり方があるようなので、1つ1つ理解していこうと思います。 今回教えていただいたことは、今後の学習に役に立ちそうです。

関連するQ&A

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • たわみ角とたわみ曲線の求め方(不定積分の仕方)

    たわみ角とたわみ曲線の求め方(不定積分の仕方) 今、大学の授業で「たわみ角とたわみ曲線」を求める問題を解いています。 この問題では(1)と(2)の方法で答えが変わってきてしまいます。 答えを見ると(2)の置換積分で解いた答えが正しいようです。 何故でしょうか? 説明よろしくお願いします。 (1)A=∫(l-x)^2dx =∫(l^2-2lx+x^2)dx A=(l^2)x-lx^2+(x^3)/3+C x=0のとき A=C (2)A=∫(l-x)^2dx u=l-xとする du/dx=-1 dx=-du A=-∫u^2du =-(u^3)/3+C =-{(l-x)^3}/3+C x=0のとき A=-(l^3)/3+C x=0のときのAの値が異なってしまいます。 よろしくお願いします。

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

その他の回答 (1)

  • 回答No.2
noname#56760

置換積分なら ∫sinAcosAdx=∫sinA(sinA)'dx=(sinA)^2/2+C1 そのままやれば ∫sinAcosAdx=∫2sin2A/4dx = -cos2A /4 +C2 定数 C2=C1+1/4とすれば -cos2A /4 +C2=-cos2A /4 +C1+1/4=(1-cos2A)/4+C1=(sinA)^2/2+C1 となります。定数に定数を足しても定数ですから構いません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 このような場合、定数部分の違いは関係ないのですね。 積分の解き方は1通りでない、ということを教えていただいて、安心です。 これからもいろいろと問題を解いていきたいと思います。 ありがとうございました。

関連するQ&A

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 置換積分の問題です

    置換積分の問題です ∫2x/(x^4-2x^2+2)dx(積分範囲1~2) どの部分を置き換えればよいのかもわかりません。 答えはtan-1(3)です(逆正接です) どうかよろしくお願いします

  • 置換積分

    おそらくは置換積分の問題だと思うのですが、 ∫x/(1+x^4)dx (積分範囲[0,1]) をどう置換していいかわからないのです。 1+x^2の形はtanθ、1-x^2の置換はsinθで置くというのは定石ですが、このように次数が大きい場合はどうすればよいのでしょうか。 部分分数展開も分母が1+x^4では使いにくいですし、なにかよい方法があれば教えていただきたいです。 よろしくおねがいします。

  • 定積分

    ∫[1→2](sinπx)^2dx この問題なんですが、置換積分を用いて t=πxとおいて dx=dt/π tの範囲は[π→2π] ∴∫[π→2π](1/π)(sint)^2dt =(1/π)∫[π→2π](sint)^2dt =(1/π)[(1/3cost)(sint)^3][π→2π] =0 ってなったんですが答えは1/2でした。 どうすればいいでしょうか?

  • 置換積分

    ∫1/(2e^x+1)dxを t=2e^x+1として置換し積分すると log|2e^x/(2e^x+1)|となると思いますが 回答はlog|e^x/(2e^x+1)| 答えを微分すると どちらも被積分関数に戻ると思います 置換の仕方に数学的に 何か重要なミスあるのでしょうか? それ違うならこの方法のダメところ教えてください 多分バカな質問だと思いますが 教えてください

  • 置換積分のイメージ

    置換積分についての質問です。 数式の処理は出来ます。 ただ∫f(g(x))g'(x)dx=∫f(u)du [ただしu=g(x)] という置換積分の式についてイメージができません。 左辺はdxなのに右辺はduである理由も、なんとなくわかっているようなわかっていないような、すごく曖昧な理解しか出来ていません。 そこでこの置換積分の式についての理解を深めさせていただきたいです。 この数式の意味をなるべく言葉で教えて欲しいと思います。 よろしくお願いします。

  • (1)∫sin^2dxの不定積分を求めよ

    (1)∫sin^2dxの不定積分を求めよ (2)x=sintと置換して∫√1-x^2dxの不定積分を求めよ (3)4x(1-x)=1-(2x-1)^2を利用して、 ∫dx/√x(1-x)=∫2dx/√4x-4x^2の不定積分をを求めよ

  • 積分

    例えば、y=L-xをxについて積分するとします。このときLを定数とします。 ∫(L-x)dx=Lx-1/2*x^2   という方法で出る答えと L-xをtに置き換えて置換積分する方法で ∫-tdt=-1/2*t^2→-1/2*(L-x)^2  でる答えが違うのですが 後者のやり方は間違っているのでしょうか??

  • 置換積分について

    ∫[-∞→∞]sin^3Θdxを置換積分するにはどうすればよいですか?積分の範囲は∫[0→π]になるようですが。。

  • 積分の問題で答えが二つでます。

    ∫(3x + 2)^2 dx という問題なんですが、答えが二つでてしまって困っています。 展開してみると、 ∫(3x + 2)^2 dx = ∫(9x^2 + 12x + 4) dx = 3x^3 + 6x^2 + 4x + C となりますが、 置換積分でしてみると、 u = 3x + 2 du = 3dx dx = du/3 ∫(3x + 2)^2 dx = ∫u^2 * du/3 = ∫1/3 * u^2 du = 1/9 * u^3 + C = 1/9 * (3x + 2)^3 + C = 1/9 * (27x^3 + 54x^2 + 36x +8) + C = 3x^3 + 6x^2 + 4x + 8/9 + C となります。 どういう理由で一方のやりかたでやらなければいけなくて、どういう理由でもう一方のやりかたを使ってはいけないのか、というあたりを教えてください。