• ベストアンサー

・・・999999 = -1を示す方法

dfhsdsの回答

  • dfhsds
  • ベストアンサー率28% (2/7)
回答No.7

http://www.math.kyoto-u.ac.jp/~kato/Data/p-adic02.pdf に書いてあることの受け売りですが。 ・・・999999. などのように左側に数字が続く数は、無限10進数などと呼ばれます。 それによると、 -1:=・・・999999. というのは記号の書き換えみたいなものです。 普通は、素数pを取って、p進数体を考えたほうが、理論が簡潔になります。 ただ、 ・・・999999. という「数」を、無限10進数と解釈する方法と、どなたかがおっしゃっていた9/(1-z)という複素関数を解析接続して、z=10のときの値と解釈する方法の関連性は僕はよくわかりません。

R_Earl
質問者

お礼

返事が大分遅れてしまい、申し訳ありませんでした。 p進数について、いつかちゃんと調べてみたいです。 回答ありがとうございました。

関連するQ&A

  • 「循環少数0.61は初項a=0.61、公比r=1/

    「循環少数0.61は初項a=0.61、公比r=1/100の無限等比級数の和である。よって、循環少数0.61を既約分数で表すと□となる。」 この□を求める問題の解答に、 0.61=0.61/(1-1/100) =61/99 という計算式があったのですが、これは無限等比級数の和がa/(1-r)であることを利用しているのですか?でも、何故和を求めたことが循環少数を既約分数で表したことになるのですか? 解説をお願いしたいです。

  • この数字の問題を教えてください

    (1)循環小数x=0.312312312…を等比数列の無限和とみなして表現しなさい。 (2) (1)で表現した式の第1項から第n項までの和の式を求めなさい。 (3) (2)で求めた極限をとって、(1)のxを分数で表現しなさい。

  • 無限級数の問題です。

    こんにちわ。えみやんです。 久しぶりに質問させていただきます。 今回は無限級数の問題2題なのですが (1)無限級数 Σ_{n=1}^{∞}〔1/{n(n+2)}〕    の和を求めてください。    (1)は部分和を出さなければいけないというのは     判るのですがどうしたら良いのか判りません。     (2)ある無限等比級数の和は6で、その級数の各項    の平方を項とする無限等比級数の和は12です。    もとの級数の初項と公比を求めてください。    (2)は無限等比級数の和の公式を使うのは判るのですが「各項の平方を項とする」という部分がよく判りません それでは、宜しくお願いします。解答お待ちしております。

  • 無限等比級数の問題

    数検の無限等比級数の問題です。 1+1/2+1/2^2+・・・・・・・・1/2^n-1+・・・・・ について次の問に答えなさい 1.上の無限等比級数の和を求めなさい。 2.上の無限等比級数の第何項までの部分和を求めれば、1で求めた和との差がはじめて1/10^4より小さくなりますか。 ただしlog(10)2=0.3010とします。 この問題なんですが、1の答えは「2」だとすぐに分かりましたが、 2の答えの求め方が分かりません。 答えは「第15項」と書いてありますが、解説が書いていなくて・・・・・・。 どのようにして解けばよいか教えていただけないでしょうか? よろしくお願いします。

  • 無限等比級数と無限等比数列の違い

    無限等比級数と無限等比数列の違い 定義 無限等比数列{r^n-1}の収束条件は、-1<r≦1であるが、 無限等比級数Σr^n-1の収束条件は、 、-1<r<1 無限等比数列は、なぜ1が含まれるのですか? あと、基本的な質問ですが、 無限等比数列は、等比数列が、無限に続き 無限等比級数は、等比数列が、無限に続いたときの和ですか? 具体的な例などを添えて、説明していただけるとありがたいです。

  • 今更ながらの算数の質問

    御世話になっております。 循環無限小数の分数化の問題をやっているのですが、本論は、「桁の多い分数の約分」です。今更ながらではありますが、桁の多い分数の共通因数を見つけるのに、非常に苦労するのですが、これに対して何か有効なショートカット(語弊がありますが)はあるのでしょうか。 改めて算数の重要性を思い知りました

  • 素数の逆数和についの証明

    素数の逆数和が無限大に発散することを、自然数の逆数和が無限に発散することの考えを用いて示したいです。 以下の証明で2点ほど分からない部分があります。^は乗数の意味です。 文中の(1)右辺を展開すると自然数の逆数和になるというのがどこから判断できるのかという点と、(2)オイラーが使用した公式は 0 < x ≦ 1/2 のとき 1/( 1 - x ) ≦ 10^x はどのような公式なのか。がよく分かりません。 証明は下記になります。 無限等比級数の公式より、 -1<x<1のとき初項1、項比 x の無限等比級数は Σ x^n = 1/(1 - x) となりました。 ここで x に素数の逆数を入れていくと 1/(1-1/2) = 1/2^0 + 1/2^1 + 1/2^2 + 1/2^3 + 1/2^4 + … 1/(1-1/3) = 1/3^0 + 1/3^1 + 1/3^2 + 1/3^3 + 1/3^4 + … 1/(1-1/5) = 1/5^0 + 1/5^1 + 1/5^2 + 1/5^3 + 1/5^4 + … 1/(1-1/7) = 1/7^0 + 1/7^1 + 1/7^2 + 1/7^3 + 1/7^4 + … のようになります。これらを辺々かけあわせると、 1/(1-1/2) × 1/(1-1/3) × 1/(1-1/5) × 1/(1-1/7) × … = (1/2^0 + 1/2^1 + 1/2^2 + 1/2^3 + 1/2^4 + …) × (1/3^0 + 1/3^1 + 1/3^2 + 1/3^3 + 1/3^4 + …) × (1/5^0 + 1/5^1 + 1/5^2 + 1/5^3 + 1/5^4 + …) × (1/7^0 + 1/7^1 + 1/7^2 + 1/7^3 + 1/7^4 + …) × … となります。ここで右辺を展開すると、 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + … となり、これは自然数の逆数の和です。 これは無限大になりましたね。つまり U = 1/(1-1/2) × 1/(1-1/3) × 1/(1-1/5) × 1/(1-1/7) × … = ∞ なんですね。ここでオイラーが使用した公式は 0 < x ≦ 1/2 のとき 1/( 1 - x ) ≦ 10^x です。これを利用すると、 U = 1/(1-1/2) × 1/(1-1/3) × 1/(1-1/5) × 1/(1-1/7) × … ≦ 101/2+1/3+1/5+1/7+… Uは無限大なのでそれより大きい 101/2+1/3+1/5+1/7+… も無限大となり、 1/2 + 1/3 + 1/5 + 1/7 + … つまり素数の逆数の和も無限大になるわけです。 以上が素数の逆数和が無限に発散することの証明です。 もしよろしければ、よろしくお願いします。

  • 小数、循環小数と分数について

    小数、循環小数と分数について 教えてください。 ある本に、『0.63を分数にすると?』というのがあり、 答えは(100x=63.636363...)-(x=0.636363...)=7/11 となっていました。しかし、0.36が循環小数であるという判断はどうするのですか? そもそも循環小数は数字が繰り返されるもので、0.636363・・ 循環小数でないもの(ただの少数?)は0.63ということではないのですか?? ただの少数だと0.63=63/100ではないのでしょうか??? ばかな質問かもしれませんが、どなたか宜しくお願い致します。

  • 無限級数の和について(黄チャートIIIのEX92)

    いつもお世話になっております。 黄チャートにある問題についてですが、初項と(第2項以降が収束条件を満たす無限等比級数)からなる無限級数の和を求める際に、第2項以降をかっこでくくって、その部分が収束するのでその和と初項の足し算の和を与えられた無限級数の和としております。 ここで、気になっているのが、収束する無限級数なのでかっこでくくってよいとのことなのでしょうが、残り(a1)が定数の場合にはこのようにして良いのでしょうか。 (教科書には、収束する無限級数同士であれば、分割可能としておりますが、定数も収束しているからということなのでしょうか)。 a1が定数、a2+a3+・・・+an+・・・が収束する無限等比級数で、  a1+a2+a3+・・・+an+・・・=a1+(a2+a3+・・・+an+・・・) 宜しくお願い致します。

  • 数列の問題

    a=1、r=が2の無限等比級数の第n部分和をSnとするとき、 無限級数の和 ΣSn/(4^n)・・・・・・☆ を求める問題なんですが、 まず Sn={1-(2^n)}/(1-2) をもとめて、これを☆に代入すると Σ[{1-(2^n)}/(1-2)]/(4^n) になりました。 ここからどうすればいいのでしょうか?