• 締切済み
  • 暇なときにでも

4次元のベクトルpとqに対して、|p|*|q|*sinθはどのようにかける?

2次元のベクトルp=(a,b)とベクトルq=(x,y)に対して、 なす角をθとすると、 |p|*|q|*cosθ=ax+by, |p|*|q|*sinθ=±(ay-bx) となります。 4次元のベクトルp=(a,b,c,d)とベクトルq=(x,y,z,w)に対しては、そのなす角θというものが、 |p|*|q|*cosθ=ax+by+cz+dw で定義されますが、このとき、 |p|*|q|*sinθ は成分を用いてどのようにかけるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数168
  • ありがとう数1

みんなの回答

  • 回答No.3

n次元ベクトルに対して外積はm=Combination(n,2)次元空間のベクトルになります。 n次元ベクトルの直交基底ei(i=1,2,...,n)に対して、ei×ej=-ej×eiを直交基底にとります。 すると、成分表示すればたすき掛けが成分として出てきて、双線型性をもった「積」(m次元ベクトル)が定義できます。 u、vをn次元ベクトルとして、u×vはもとの空間の基底の取り方にはよらない(本当か?)ので 直交写像Tによっても外積はかわらないので |u×v|=|(Tu)×(Tv)| さらに、u,vの張る平面がe1,e2の平面と一致するようにTをとると、2次元の場合に帰着できて |u×v| = |(Tu)×(Tv)| = |Tu||Tv|sinθ となります。さらに |Tu|=|u|, |Tv|=|v| なので、 |u×v| = |(Tu)×(Tv)| = |Tu||Tv|sinθ = |u||v|sinθ が成り立ちます。よって、 |u×v|^2=Σ(aibj-ajbi)^2 = |u|^2 |v|^2 (sinθ)^2 です。(本当か?)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • ベクトルの外積の問題

    ベクトルAの向きをx軸の方向ベクトルA=(A,0,0)に、ベクトルBを(x,y)平面にとるとベクトルB=(Bx,By,0)=B(cosθ、sinθ、0)であるからベクトルC=ベクトルA×ベクトルB=AB(0,0,sinθ) このベクトルの大きさはABsinθ=A(Bsinθ)=(Asinθ)Bと表せるので、大きさAとベクトルAに垂直なベクトルBの成分との積、あるいは大きさBとベクトルBに垂直なベクトルAの成分との積である。 ベクトルAとベクトルBとで作る平行四辺形の面積で、向きがベクトルAとベクトルBとで作る平面な垂直なベクトルになる。 問題1 ベクトルA×ベクトルAを計算せよ。 問題2 ベクトルA=(Ax,Ay,0)=A(cosα,sinα,0)とベクトルB=(Bx,By,0)=B(cosβ,sinβ,0)の外積ベクトルC=ベクトルA×ベクトルBを作り、三角関数の加法定理を使い、大きさ|C|とその方向の意味を考えよ。  全く解けません。どなたか教えていただけますか?

  • ベクトルの回転について

    はじめまして。 以下のような問題について大学1年生の弟から質問されたのですが、 答えに自信がありません。どうか皆様のお力をお貸しください。 三次元空間上にベクトルA(ax,ay,az)、B(bx,by,bz)がある。 このAがBと平行になるような計算をしたい。 自分なりの考えは以下の通りです。 1.z座標を無視して、xy平面上のベクトルとして考え、成す角θzを求める θz=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2 |B|=√bx^2+by^2 <A,B>=ax×bx+ay×by 2.x座標を無視して、xy平面上のベクトルとして考え、成す角θxを求める θx=ArcCos{<A,B>/|A||B|} |A|=√ay^2+az^2 |B|=√by^2+bz^2 <A,B>=ay×by+az×bz 3.y座標を無視して、xy平面上のベクトルとして考え、成す角θyを求める θy=ArcCos{<A,B>/|A||B|} |A|=√ax^2+az^2 |B|=√bx^2+bz^2 <A,B>=ax×bx+az×bz 4.z軸回転させる。このとき、z軸回転させた座標をzAx、zAyとする。 zAx=ax Cosθz-ay Sinθz zAy=ax Sinθz + ay Cosθz 5.次にx軸回転させる。このとき、x軸回転させた座標をxAy、xAzとする。 xAy=zAy Cosθx-az Sinθx  xAz=zAy Sinθx + az Sinθx 6.次にy軸回転させる。このとき、y軸回転させた座標をyAx、yAzとする。  yAz=xAz Cosθy-zAx Sinθy yAx=xAz Sinθy + zAx Cosθy 7.求まったyAx、zAy、yAzを成分とする、ベクトルはBと平行である。(終了) うろ覚えですが、軸回転は順番によって全く違った回転をしてしまうというのを昔勉強したような気がするのですが、今回の場合は特にそういった問題は関係ないのでしょうか? また、それぞれの平面ごとになす角を求め、3つのなす角を使った回転を行ないましたが、 θ=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2+az^2 |B|=√bx^2+by^2+bz^2 <A,B>=ax×bx+ay×by+az×bz といった風に、一気に求めたθを用いて回転させる方法はありませんでしょうか? (AとBの外積で出てくる値が回転軸になるような・・・・?) 宜しくお願いします。

  • 回答No.1

pとqについて、外積を4次元に拡張させたものではないでしょうか。 4次元以上の外積は非常に話がややこしくなるようですが、以下のURLを参考にしてみてはいかがでしょう。

参考URL:
http://oshiete1.goo.ne.jp/qa193082.html

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル積の問題です

    ベクトル積の問題です、『ベクトルA、Bについて以下の問題を示せ (1) A×B=-B×A (2)A×A=0 (3)A×(αB+βC)=αA×B+βA×C (α、βは定数)』 この問題の前に導入問題があり、ベクトルCの導出が出来ません。この問題が出来れば上記の問題が解けると思うのですが・・・『ベクトルA、BについてA = (ax, ay, az), B = (bx, by, bz)と成分表示したとき、 |C|=|A||B|sinθ、C×A=0、 C×B=0 とする。 ベクトルCの成分を求めよ』     よろしくお願いします

  • ベクトル

    ベクトルA の大きさが5.0m 西向き。 ベクトルB の大きさが4.0m 北西に35° ベクトルA+B の大きさは何になりますか? という問題で、 私は ベクトルA+B を ベクトルCとおいて、 Cx=Ax+Bx  =5+4cos(180-35)  =5-3.28  =1.72 Cy=Ay+By  =0+4sin(180-35)  =2.29 よって、 C=√(1.72^2 + 2.29^2) =2.86(m) と出たのですが、 答えを見てみると4.2mになっています。 一体どこでどう間違えたのか分かりません。 間違いの指摘をよろしくお願いします。

  • 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件

    4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 これらのベクトルで張られる空間が1次元、2次元、3次元、4次元である条件を求めたいのです。 各ベクトルを並べて行列(a↑ b↑ c↑ d↑)を作り、基本変形で階数を計算するというアルゴリズムではなく、各成分の代数的な関係を求めたいのです。 4つのベクトルで張られる空間が4次元のとき、超体積が0ではないので、行列式 |a↑ b↑ c↑ d↑|≠0 4つのベクトルで張られる空間が1次元のとき、すべて平行なので、 a↑∥b↑∥c↑∥d↑ a[1]:a[2]:a[3]:a[4]=b[1]:b[2]:b[3]:b[4]=c[1]:c[2]:c[3]:c[4]=d[1]:d[2]:d[3]:d[4] (a[1]/a[4],a[2]/a[4],a[3]/a[4])=(b[1]/b[4],b[2]/b[4],b[3]/b[4]) =(c[1]/c[4],c[2]/c[4],c[3]/c[4])=(d[1]/d[4],d[2]/d[4],d[3]/d[4]) このあと、一つの式にする、つまり、イコールを一つだけにしてきたいのですが、複雑そうです。行列式またはシグマ記号を使って、表記できないでしょうか? 4つのベクトルで張られる空間が2次元、3次元のとき、それぞれの各成分にはどういった関係式があるのでしょうか?

  • 外積の成分の求め方

     外積a×bの成分を求めるときに、図を用いて考える場合についてなのですが。  点A,Bがありそれぞれの位置ベクトルをa=(ax,ay,az),b=(bx,by,bz)とし、点A,Bをxy平面に投影したときの点をA',B'とすれば、点A',B'への位置ベクトルはa'=(ax,ay,0),b'=(bx,by,0)となりますよね?a×bとz軸とのなす角をγ(ガンマ)とすれば、 |a×b|cosγ=2△OABcosγ=2△OA'B' となるそうなのですが、理解できません。教えてください。

  • 4次元空間の3つのベクトルが互いに直交する条件

    以前、 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件 http://oshiete1.goo.ne.jp/qa3519203.html において、いろいろ教えていただけました。 同様にすれば、4次元空間の3つのベクトルが張る空間が1次元、2次元、3次元である条件、が成分を用いて書けることになります。 ところで、いくつかのベクトルが張る空間が1次元というのは、すべてのベクトルが平行ということです。 今回、それとは逆に「すべてのベクトルが互いに直交する」という条件を考えてみたいと思います。 4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 a↑、b↑、c↑、d↑の4つのベクトルが互いに直交する条件は、 4つのベクトルでできる立体=超立方体 なので、行列式の絶対値は、各辺の積と等しく、 |a↑ b↑ c↑ d↑|^2=|a↑|^2* |b↑|^2* |c↑|^2*| d↑|^2 とかけます。成分でも書けます。 a↑、b↑の2つのベクトルが互いに直交する条件は、 内積を用いて、 a↑・b↑=0 とかけます。成分でも書けます。 最後に、a↑、b↑、c↑の3つのベクトルが互いに直交する条件を、できるだけ簡素に書きたいとき、どういった書き方になるのでしょうか? すべての組の内積が0というのより、なんらかの行列式を用いて書きたいのですが。

  • ベクトルの質問です

    平面の方程式 ax+by+cz+d=0 のabcはその平面の法線ベクの成分。xyzはその平面上のベクトルの成分ですか? 平面を求める問題などでは、平面上のベクトルはあまり出てきませんが・・・

  • ベクトルの内積を複素数で表したい

    はじめまして。 複素平面上の点 0, z(1)=r(1)*e^iθ(1)=r(1){cosθ(1)+isinθ(1)}, z(2)=r(2)*e^iθ(2)=r(2){cosθ(2)+isinθ(2)} を考えます。 原点0からz(1)への2次元実ベクトル、 ( r(1)cosθ(1), r(1)sinθ(1) ) と、原点0からz(2)への2次元実ベクトル、 ( r(2)cosθ(2), r(2)sinθ(2) ) を考えます。 このとき、二つの2次元実ベクトルの内積 ( r(1)cosθ(1), r(1)sinθ(1) )・( r(2)cosθ(2), r(2)sinθ(2) ) を複素数z(1)、z(2)を用いて表したいのですが、どういった形になるのでしょうか? また、二つの複素数z(1)、z(2)の積 z(1)*z(2) をベクトルOz(1)、Oz(2)を用いて表したいのですが、どういった形になるのでしょうか?

  • 極座標変換したベクトルにさらに直行なベクトル

    x,y,z軸に対して極座標変換したベクトルrがあります。 r = (sinθcosφ,sinθsinφ,cosθ)です。 このr軸上にそれぞれ直行なベクトルα,βがあります。その関係は r = β × α です。 このα,βのベクトル成分をベクトルrや単位ベクトルx,y,zなどから求めたいのですが、どのように求めてよいかわかりません。 x = (1,0,0), y= (0,1,0), z = (0,0,1)です。 ご存知の方詳しい方がいらっしゃったら教えて下さい。 よろしくお願いします。

  • 4次元空間の超平面で、パラメータを消去するには?

    4次元のxyzw直交空間を考えます。 直線は、パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s のように書けて、パラメータを消すと、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] のように書けます。 平面(?)は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t のように書けますが、パラメータを消すとどうなるのでしょうか? 超平面は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u のように書けますが、パラメータを消すとどうなるのでしょうか? おそらくAx+By+Cz+Dw+E=0のように書けるとは思いますが、それらの係数は具体的にはどのような形なのでしょうか? 3次元空間の平面の場合には、この最後の問いは、2つの3次元ベクトルの外積で表されると思うので、今回の設定を4次元にしてみました。

  • 極座標の基本ベクトルについて

    3次元空間を考えます。 任意のベクトルAは極座標系の任意の3つの基本ベクトルer,eθ、eφを用いて、 A=Arer+Aθeθ+Aφeφと表せる。 とあるのですが、 er=(sinθcosφ,sinθsinφ,cosθ)eθ=(cosθcosφ,cosθsinφ,-sinθ)eφ=(-sinφ,cosφ,0)とxyz座標系を用いて表せて、er,eθ、eφはθとφによって異なるので、極座標系では基本ベクトルが無数にあると考えてよいのでしょうか?(初学者、独学中なので、イメージが湧きません) θ=φ=30°のときの基本ベクトルを用いてAを表した場合とθ=φ=60°の基本ベクトルを用いて表した場合では、それぞれのer,eθ、eφの係数(成分)が異なると思うのですが、どの角度の基本ベクトルを使うのかは自由に決めていくと考えてよいのでしょうか?

専門家に質問してみよう