• ベストアンサー
  • すぐに回答を!

ベクトルの解析について

ベクトルA、Bに対して div(A×B)=BrotA-ArotBを示せという問題で、 div(A×B)=det[(∂/∂x, ∂/∂y, ∂/∂z), (Ax, Ay, Az), (Bx, By, Bz)] BrotA=det[(Bx, By, Bz), (∂/∂x, ∂/∂y, ∂/∂z), (Ax, Ay, Az)] ArotB=det[(Ax, Ay, Az), (∂/∂x, ∂/∂y, ∂/∂z), (Bx, By, Bz)] というところまでは分かったのですが、サラスで展開してもイコールになりません。どうすればイコールになるんですか? どなたか教えていただけないでしょうか?

noname#76881
noname#76881

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数272
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

なるほどォ・・・・こういう書き方もあるのかφ(.. ) …メモメモ で、合わない原因の予想ですが、サラスがなんだか分からないので外してるかもしれませんが div(AxB)のところで、Aだけ微分してBの微分を忘れてませんか div(AxB) = ∂/∂x(Ay*Bz)+・・・=Bz∂Ay/∂x+Ay∂Bz/∂x+・・・・

共感・感謝の気持ちを伝えよう!

質問者からのお礼

サラスの規則ってやつです。行列式を展開するときに使うやつです。(多分…) どうやら行列式でやっていたため合わなかったみたいです。 わざわざどうもありがとうございました!!

関連するQ&A

  • ベクトルの回転について

    はじめまして。 以下のような問題について大学1年生の弟から質問されたのですが、 答えに自信がありません。どうか皆様のお力をお貸しください。 三次元空間上にベクトルA(ax,ay,az)、B(bx,by,bz)がある。 このAがBと平行になるような計算をしたい。 自分なりの考えは以下の通りです。 1.z座標を無視して、xy平面上のベクトルとして考え、成す角θzを求める θz=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2 |B|=√bx^2+by^2 <A,B>=ax×bx+ay×by 2.x座標を無視して、xy平面上のベクトルとして考え、成す角θxを求める θx=ArcCos{<A,B>/|A||B|} |A|=√ay^2+az^2 |B|=√by^2+bz^2 <A,B>=ay×by+az×bz 3.y座標を無視して、xy平面上のベクトルとして考え、成す角θyを求める θy=ArcCos{<A,B>/|A||B|} |A|=√ax^2+az^2 |B|=√bx^2+bz^2 <A,B>=ax×bx+az×bz 4.z軸回転させる。このとき、z軸回転させた座標をzAx、zAyとする。 zAx=ax Cosθz-ay Sinθz zAy=ax Sinθz + ay Cosθz 5.次にx軸回転させる。このとき、x軸回転させた座標をxAy、xAzとする。 xAy=zAy Cosθx-az Sinθx  xAz=zAy Sinθx + az Sinθx 6.次にy軸回転させる。このとき、y軸回転させた座標をyAx、yAzとする。  yAz=xAz Cosθy-zAx Sinθy yAx=xAz Sinθy + zAx Cosθy 7.求まったyAx、zAy、yAzを成分とする、ベクトルはBと平行である。(終了) うろ覚えですが、軸回転は順番によって全く違った回転をしてしまうというのを昔勉強したような気がするのですが、今回の場合は特にそういった問題は関係ないのでしょうか? また、それぞれの平面ごとになす角を求め、3つのなす角を使った回転を行ないましたが、 θ=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2+az^2 |B|=√bx^2+by^2+bz^2 <A,B>=ax×bx+ay×by+az×bz といった風に、一気に求めたθを用いて回転させる方法はありませんでしょうか? (AとBの外積で出てくる値が回転軸になるような・・・・?) 宜しくお願いします。

  • ベクトル積の問題です

    ベクトル積の問題です、『ベクトルA、Bについて以下の問題を示せ (1) A×B=-B×A (2)A×A=0 (3)A×(αB+βC)=αA×B+βA×C (α、βは定数)』 この問題の前に導入問題があり、ベクトルCの導出が出来ません。この問題が出来れば上記の問題が解けると思うのですが・・・『ベクトルA、BについてA = (ax, ay, az), B = (bx, by, bz)と成分表示したとき、 |C|=|A||B|sinθ、C×A=0、 C×B=0 とする。 ベクトルCの成分を求めよ』     よろしくお願いします

  • 外積の成分の求め方

     外積a×bの成分を求めるときに、図を用いて考える場合についてなのですが。  点A,Bがありそれぞれの位置ベクトルをa=(ax,ay,az),b=(bx,by,bz)とし、点A,Bをxy平面に投影したときの点をA',B'とすれば、点A',B'への位置ベクトルはa'=(ax,ay,0),b'=(bx,by,0)となりますよね?a×bとz軸とのなす角をγ(ガンマ)とすれば、 |a×b|cosγ=2△OABcosγ=2△OA'B' となるそうなのですが、理解できません。教えてください。

その他の回答 (1)

  • 回答No.2
noname#66248
noname#66248

∂^2Ay/∂y∂x=∂^2Ay/∂x∂y というような、微分の順序に関係するところがイコールにならないとしているのではありませんか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

もう一度成分計算したら答えでました。 ご丁寧にどうもありがとうございました。

関連するQ&A

  • ベクトル 外積について

    ベクトル 外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 外積 A×B=(aybz-azby,azbx-axbz,axby-aybx)ですがこれは、 A×B=(aybz-byaz,azbx-bzax,axby-bxay)と書いても同じでしょうか? また、内積は2・3次元、外積は3次元のイメージなのですが、4次元等にも拡張して 考えられるものなのでしょうか? ご回答よろしくお願い致します。

  • ベクトル

    違いが分からなくて困っています。ベクトルA=ax+(-7)ay+5az、ベクトルB=(-4)ax+(-2)ay+2azがあったとしてAのB方向成分の大きさとAのB方向のベクトルはどのように違い、どうやって計算すればよいのでしょうか?

  • ∇とベクトルの積の表現形式について

    演算子∇とベクトル関数Aが∇Aと書かれている場合、これはテンソルとなりますね。(スカラ―関数φだと∇φはベクトルでシンプルでなじみがあります。) このテンソルですが、表現の形式はマトリックスとなりますね。ベクトルの演算子∇とベクトルAで作るマトリックスには2通りの表記法が考えられます。 ∂Ax/∂x ∂Ay/∂x, ∂Az/∂x ∂Ax/∂y ∂Ay/∂y, ∂Az/∂y ∂Ax/∂z ∂Ay/∂z, ∂Az/∂z か ∂Ax/∂x ∂Ax/∂y, ∂Ax/∂z ∂Ay/∂x ∂Ay/∂y, ∂Ay/∂z ∂Az/∂x ∂Az/∂y, ∂Az/∂z です。 どちらになるのか決まっているでしょうか。∇Aと表記しただけではどちらになっているか示すことができないと思いますが。あるいはどちらでも同じことになるとか、でしょうか。 よろしくお願いします。

  • 単位ベクトルi,j,k と ベクトル成分 について

    例えば、変位ベクトルAの単位が(km)のとき 単位ベクトルijkを使い A=(Ax)i + (Ay)j + (Az)k    (Ax,Ay,Az はベクトル成分) と表されたとき、 kmという単位は  ベクトル成分Ax,Ay,Azに付くのでしょうか、 それとも単位ベクトルi,j,k につくのでしょうか?  そもそもベクトル成分に単位はあるのでしょうか?

  • 空間上の2直線のなす角について

    数学は高校2年生で止まっていますので、難しい内容だとすぐには理解できないかもしれませんが、がんばって理解しようと思っています。 今回質問させて頂きたいのは「空間上の2直線のなす角」についてです。 1つ目の直線は、基準となる直線でZ軸と平行(という考え方が正しいかすら分かってません) 2つ目の直線は、傾きを持った平面の法線ベクトルになる予定です。 その2つの直線のなす角を求めたいと思っています。 1つ目の基準となる直線はA(1,1,0)、B(2,1,0)、C(1,2,0)の3点を通る面の法線ベクトルを求めればZ軸と平行な直線が求まるのではないかと思いました。 しかしながら、AB→とAC→の外積を求めようとすると(0,0,0)という解になってしまいました。 1つ目の直線と2つ目の直線のなす角を求めるには cos φ = A・B / (|A| * |B|)    Ax * Bx + Ay * By + Az * Bz = ─────────────────────────── √((Ax*Ax + Ay*Ay + Az*Az) * (Bx*Bx + By*By + Bz*Bz)) を使って求めるところまでは調べたのですが、1つ目の直線が求められないためになす角を求めるところまでたどり着けません。 数学に不慣れな者の質問で所々不明な箇所があると思いますが、回答いただけるとありがたいです。 宜しくお願い致します。

  • 垂直なベクトルの点の求め方

    こんにちは、早速ですが質問したい事があります。 まず、以下の画像を元に説明させていただきます。 http://www1.axfc.net/uploader/Img/so/26897.jpg 現在ベクトルの勉強をしているのですが、画像における(x,y)の座標(ベクトル?)を求めるには、どのようにすればよいでしょうか? このとき、(ax,ay),(bx,by)の座標は分かっているものとします。 アドバイス等よろしくお願いします。

  • 3次元で回転させた座標値の計算方法

    点(Ax、Ay、Az)を3次元空間にある、点(Bx、By、Bz)から、点(Cx、Cy、Cz)に向かう直線を軸に任意の角度で回転させたときの、点(A’x、A’y、A’z)の座標値の計算方法を教えてください。ただし自分の数学レベルは中学生並でベクトルが少しだけ理解できるていどです。よろしくお願いします。

  • rot(回転)におけるベクトルの成分表示について

    以下の物理数学におけるrot(回転)を解説したサイトについてなのですが、 http://butsuri.fc2web.com/pmath/1-06.html 解説中に出てくるベクトルAの成分はA(Ax,Ay,Az)であり、たとえば単位ベクトル(i,j,k)を用いて表現するとA=Axi+Ayj+Azkのようになると思われます。 ですが、解説中にあるAx(y)やAx(y+Δy)のように、ベクトルAの成分であるAxやAyについてもさらに成分を考えているところがよくわかりません。 なぜこのような考え方をしているのでしょうか? また、A(Ax,Ay,Az)とはどのような関係があるのでしょうか?

  • ベクトルの外積の問題

    ベクトルAの向きをx軸の方向ベクトルA=(A,0,0)に、ベクトルBを(x,y)平面にとるとベクトルB=(Bx,By,0)=B(cosθ、sinθ、0)であるからベクトルC=ベクトルA×ベクトルB=AB(0,0,sinθ) このベクトルの大きさはABsinθ=A(Bsinθ)=(Asinθ)Bと表せるので、大きさAとベクトルAに垂直なベクトルBの成分との積、あるいは大きさBとベクトルBに垂直なベクトルAの成分との積である。 ベクトルAとベクトルBとで作る平行四辺形の面積で、向きがベクトルAとベクトルBとで作る平面な垂直なベクトルになる。 問題1 ベクトルA×ベクトルAを計算せよ。 問題2 ベクトルA=(Ax,Ay,0)=A(cosα,sinα,0)とベクトルB=(Bx,By,0)=B(cosβ,sinβ,0)の外積ベクトルC=ベクトルA×ベクトルBを作り、三角関数の加法定理を使い、大きさ|C|とその方向の意味を考えよ。  全く解けません。どなたか教えていただけますか?

  • 行列 連立一次方程式

    a,b,c,d,が0でない実数であるとき、次の連立一次方程式を解け ax-by-az+bu=1 bx+ay-bz-au=0 cx-dy+cz-du=0 dx+cy+dz+cu=0 行列を使った解き方でお願いします。

専門家に質問してみよう