- 締切済み
対称性とは
f(x,y) = 2x^2 + 2y^2 - x^4 - y^4という式の極大値と極小値を 求めるという問題で偏微分によって (x,y) = (0,0),(1,0),(-1,0),(0,1),(0,-1),(1,1),(-1,1),(1,-1),(-1.-1) という極値の候補が求まると思うのですが、ここから関数の対称性より、 (x,y) = (0,0),(1,0),(1,-1)に絞れるようなんですがなぜこのようになるのか よくわかりません。どなたか教えてください。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- koko_u_
- ベストアンサー率18% (459/2509)
回答No.1
候補が絞れるんじゃなくて、その三つを検討すれば良いということ。 まずは模範解答から離れて自分で問題を解くことをお勧めしたい。