• 締切済み

積分

先ほど質問しましたが、一部打ち間違えていました。 お手数ですが、再度おねがいします。 ∬xdxdy(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません。

みんなの回答

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

> x = rcosθ、y = rsinθとおいて > 範囲は0≦r≦cosθ,0≦θ≦π/4 r の範囲はθに依存しているので、 >=∬rcosθ*rdrdθ >=(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) と単純に積に分けてはいけません。 まずは r について積分して、その結果をθについて積分する必要があります。 なんとなく範囲がまちがっているような気もしますが、面倒なので確かめてません。

tonomataro
質問者

補足

アドバイス通りにしたら =∫「0→π/4」[(1/3)r^3cos^3]「0→cosθ」drdθ =∫「0→π/4」[(1/3)cos^4]dθ まで行きましたがその後はどうすればよいのでしょうか? 因みに略解は1/6だそうです。

関連するQ&A

  • 2重積分

    ∬xdx(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません アドバイスお願いします。

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 積分の問題です

    ∬∫[V]y^2dxdydz V:x^2+2y^2+3z^2<=1 で、 x=rsinθcosφ y=rsinθsinφ z=rcosθ とおきましたが、 r^2*sin^2θ*cos^2φ+2*r^2*sin^2θ*sin^2φ+3*r^2*cos^2θ<=1 となったところで、 cos^2θ+sin^2θ=1という変換が簡単に使えないことに気が付き、苦戦しています。 どうすれば良いか教えていただきたいです。

  • 大学の微分積分 ヤコビアンについて

    x=rsinθcosβ、 y=rsinθsinβ、 z=rcosθのとき jacobian δ(x、y、z)/δ(r、θ、β)を求めよ 一部ギリシャ文字がよめませんでした・・・ δは偏微分の意味を表しています   解説付きでお願いします! 

  • 三重積分の極座標変換の問題

    ∫∫∫z dxdydz (x^2+y^2+z^2≦1,z≧0) この問題の解きはじめに x=rsinθcosφ, y=rsinθsinφ, z=rcosθとおいて dxdydz=r^2sinθdrdθdφ 範囲は0<r≦1,0≦θ≦π/2,0<φ≦2πと置きましたが 範囲はこれでよろしいのでしょうか?

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • 3重積分について

    ∫(D) |x| + |y| + |z| (dx)^3 領域D:{x^2 + y^2 + z^2≦a^2, a>0}という問題で、解が(3πa^4)/2になるはずなのですが、極座標に変換する段階でいまいち分かりません。自分なりにやると、 x=rsinθcosφ, y=rsinθsinφ, z=rcosθ (0≦r≦a, 0≦θ≦π, 0≦φ≦2π)として、ヤコビアンがr^2 sinθになり、 ∫(D) |x| + |y| + |z| (dx)^3 =∫[0→2π]dφ∫[0→π]dθ∫[0→a]dr (r^2 sinθ)(rsinθcosφ+rsinθsinφ+rcosθ) このようになるのですが、自分がこれを解いていくと違った解になり、正解にたどり着きません。この変換が間違っているのでしょうか?単に途中の計算が間違っているのでしょうか? よろしくおねがいします。

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。

  • 二重積分について。

    x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。