• ベストアンサー

L2ノルムについて

こんばんは。 ノルムの勉強をしていて、疑問が出てきたので、質問しました。 f,gがC[a,b]に含まれるとき、 ||f-g||={∫(a→b)|f(x)-g(x)|^2dx}^1/2 (L2ノルム)が ノルムの条件を満たすと書いてあったのですが、 条件1:||f||>=0,||f||=0⇔f≡0 条件2:||αf||=|α|・||f||,(αは実数) 条件3:||f+g||<=||f||+||g|| を考えたとき、条件2はすぐにわかったのですが 条件1と条件3がどうしても証明できません>< アドバイスをお願いします><

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

>条件3:||f+g||<=||f||+||g|| これはコーシー・シュワルツの不等式として有名ですね。証明はkabaokabaさんがご回答されているとおりですが、参考URLも覗いてみてください。

参考URL:
http://homepage2.nifty.com/masema/pre_Hilbert.html

その他の回答 (1)

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

見ている教科書に出てなかったら 他の教科書を探したりすると大抵はでていますが・・・ (1) 積分区間は省略します. f>=0 のとき ∫f dx=0 ならば f≡0 証明できますか? 連続関数で考えているみたいなので リーマン積分で考えれば十分でしょう. ヒント:積分区間内で f≡0 ではないとすると, 積分区間内の一点 t で,f(t)が0ではない点が存在する. fは連続なので,tの十分近傍 [s,u] で f>0 となるものが存在する. [s,u] は積分区間に含まれるとしてよい. このとき,∫fdx >= ∫_{s}^{t} fdx #ほとんど答えだな・・・こりゃ ##リーマンじゃなくってルベーグだったら,f=0 a.e. です ##そのときは,それこそルベーグ積分の入門書にあります. (3)線型代数の教科書によく出てる手を使います. ヒント:任意の実数 t に対して∫(f-tg)^2 dx >= 0 なので t^2 ∫g^2 dx -2t∫fgdx + ∫f^2dx >= 0 よって,tについての二次不等式だと思って 判別式 <= 0を考えて (∫fgdx)^2 - ∫g^2 dx ∫f^2dx <=0 一方, ||f+g||^2 = ∫(f+g)^2 dx = ∫f^2 dx + ∫g^2dx + 2∫fgdx (||f|| + ||g||)^2 = ∫f^2 dx + ∫g^2 dx + 2 (∫g^2 dx ∫f^2dx)^{1/2} あとは比較するだけ. 等号成立の条件は頑張ってください. #(1)を使います.  

関連するQ&A

  • 作用素ノルム

    作用素ノルムについての質問です。 V,W:ノルム空間 L:V→Wを線形写像とする。 定義 ∥L∥=sup{∥L(x)∥ | ∥x∥=1} =sup{∥L(x)∥ | ∥x∥≦1}       =sup{∥L(x)∥/∥x∥ | x≠0} とする。 このとき∥L∥=inf{c | ∥L(x)∥≦c∥x∥}を証明したいのですが、 自分で考えた証明を以下書きます。 ∥L(x)∥≦c∥x∥ より両辺∥x∥で割り ∥L(x/∥x∥)∥≦c.  (1)inf{c}≦ sup{L(x/∥x∥)}=∥L∥は自明。 (2)A={c | ∥L(x)∥≦c∥x∥}とする。 Aは∥L(x/∥x∥)∥の上界より,任意のc∈Aに対して   sup{L(x/∥x∥)}≦c より ∥L∥≦c.   両辺下限を取ると   inf{∥L∥}≦inf{c} ∥L∥の定義より∥L∥は任意のxで成り立つのでxによらない。 故に∥L∥≦inf{c} よって∥L∥=inf{c | ∥L(x)∥≦c∥x∥}                              □ 以上,自分なりの証明なのですが,間違っている箇所や別の証明方法があれば教えてください。 見にくいと思いますがよろしくお願いします。

  • L^pノルムについての収束とは

    こんにちは。学部生で今フーリエ解析を勉強しています。 早速ですが、L^p空間で、ある関数列{f_n}が f∈L^pに収束していると、具体的にどんなことがいえるのでしょうか。つまり、「L^pノルムで収束➡almost everywhere で、「xに対して同じ関数値を返す」」と言っていいのでしょうか。 例えば、L^2で {(1/√2)×(exp(inx)) }(n∈Z)はCONSですが、これらはL^2の元にL^2ノルムについて収束しているだけであって、almost everywhere のxについて同じ値を返すという言葉を見つけられなかったので・・・。そのためフーリエ級数展開自体、意味をどう感じたら良いのかが分からない状態です。 重大な勘違いを含んでる可能性があるので厳しく指摘いただけたら、と思います。

  • 証明問題

    区間[a,b]でf(x),g(x)が連続であるとき、任意の実数tに対して  b  ∫ {tf(x)+g(x)}^2dx≧0 …(1) a がなりたつことに着目して、不等式   b           b        b (∫ f(x)g(x)dx)^2≦∫ {f(x)}^2dx∫   a a a {g(x)}^2dx …(2) が成り立つことを証明する。 できれば、くわしくおしえてください ぜんぜんわからないので

  • 関数について。

    実数の定数a,b,c,d,eを係数にもつ2つの関数 f(x)=ax^4+bx^3+cx^2+dx+e g(x)=4ax^2+3bx-2(a-c) を考える。-2≦x≦2を満たす全ての実数xで f(x)≧g(x) であるならば、 max{|a|,|b|,|c|,|d|}≦|e| が成り立つことの証明を教えて下さい。

  • ノルムについて

    線形写像Aに対して∥A∥=sup{∥Ax∥:x∈R^n,∥x∥≦1}で定める。 このとき、(L(R^n,R^m),∥・∥)はノルム空間になる。 A∈L(R^n,R^m)に対して次が成り立つことを示せ。 ∥A∥=sup{∥Ax∥:∥x∥=1,x∈R^n} どう証明していいのかわかりません。 よければ解説お願いします。 質問がわかりづらくてすみません。

  • ∫[0→1]|x^2+ax+b|dxの最小値についてヒントください

    a,bを任意の実数とするとき、積分∫[0→1]|x^2+ax+b|dxの値の最小値を次の方法で求めるのですが(4)がわからないのでヒントを教えて下さい (1)Aを実数として|A|+A≧0、(等号はA≦0のとき)           |A|-A≧0、(等号はA≧0のとき)を証明せよ (2)関数f(x)について   I=∫[0→1]f(x)dx, J=∫[0→c]f(x)dx+∫[c→d]f(x)dx+∫[d→1]f(x)dx ただし、0<c<d<1とおく   I≧Jを証明せよ。また等号が成立する条件を求めよ  (3)f(x)=x^2+ax+bとおくときJの値をa,b,c,dで表し、a,bについて整理しJの値がa,bに関係なく一定となるc,dの値を求めよ (4)積分∫[0→1]|x^2+ax+b|dxの最小値と、その時のa,bの値を求めよ。 という問題です(1)はAを正負に分けて証明すればできました。 (2)はI-Jとおいて、積分区間を0→c,c→d,d→1の三つに分けて(1)を利用して証明できました。等号が成立する条件も(1)からわかりました。 (3)は計算してa(c^2-d^2+1/2)+2b(c-d+1/2)+2/3(c^3-d^3+1/2) a,bの係数が0と置いてc=1/4,d=3/4がでました。 (4)が全く分かりません(c,dがx^2+ax+b=0の解ぐらいです (4)のヒントを何か下さい・・・・・よろしくお願いします。

  • 行列のノルム

    以下、xはn次元ベクトル、A=(a(i,j))はn×n行列とします。 ■||x||_2 = √{Σ_[j=1~n](x_j)^2} (ユークリッドノルム) ※x_jは、xの第j成分です。 このノルムを採用したとき、行列Aのノルムは以下のように定義することが出来る。 ・||A||_2 = MAX_[x]{||Ax||_2/||x||_2} この具体的な表現は以下で与えられる、らしいのですが…。 ・||A||_2 = MAX_[k]{√(μ_k)} (μ_kは、BをAの転置行列として、BAの固有値。) 本を読んでも、「簡単に導出できるので試みられたい。」とかしか書かれておらず、困っています。どうやって導出するのでしょうか?僕には簡単に導出できません。 また、 ■||x||_∞ = MAX_[k]{|x_k|}  ※x_kは、ベクトルxの第k成分。 このノルムを採用したとき、行列Aのノルムを ・||A||_∞ = MAX_[x]{||Ax||_∞/||x||_∞} と定義できて、この具体的な表現は、 ・MAX_[i]{Σ_[j=1~n]|a(i,j)|} で与えられるらしいのですが、本を読んでも、これも証明が省かれています。 ||A||_1についてはきちんと証明が載っているのですが…。 どちらか片方ずつでも、おねがいします。

  • シュワルツの不等式

    現在、「シュワルツの不等式」を勉強していますがわからない問題があります。これは大学受験用参考書に載っている問題です。どなたかおわかりになる方がいらっしゃれば教えていただきたいと思います。宜しくお願いいたします。 問題は f(x)、g(x)はともに区間a≦x≦bで定義された連続関数とする。このとき、tを任意の実数とし、∫(a→b){f(x)+tg(x)}^2dxを考えることにより、次の不等式を証明せよ。 {∫(a→b)f(x)g(x)dx}^2≦∫(a→b){f(x)}^2dx∫(a→b){g(x)}^2dx また、どのようなときに統合が成立するか述べよ。です。 全くわからなくて、解答をみたのですが、解答をみても納得いかないところがあります。 解答は、 任意のtについて、{f(x)+tg(x)}^2≧0から、∫(a→b){f(x)+tg(x)}^2dx≧0 t^2∫(a→b){g(x)}^2dx+2t{∫(a→b)f(x)g(x)dx}+∫(a→b){f(x)}^2dx≧0 ⅰ)∫(a→b){g(x)}^2dx=0のとき、a≦x≦bでつねにg(x)=0 ・・・ ⅱ) ∫(a→b){g(x)}^2dx>0のとき・・・ とあります。 ⅰのときのところで質問です。 ∫(a→b){g(x)}^2dx=0のとき、a≦x≦bでつねにg(x)=0とは必ずしもそういえますか? たとえば、g(x)がaとbの中間で点対称のグラフでも、 ∫(a→b){g(x)}^2dx=0 となると思います。必ずしもg(x)=0とは言えないと思いますが・・・。 解答を読んでもよくわかりません。 この解答の意図するところもよくわかりません。(途中までしか書いてませんが。) 私の勉強不足なのですが質問する人がいないため、困っています。どなたかご存知の方がいらっしゃれば、教えていただきたいと思います。また説明不足の点があれば補足させていただきますので宜しくお願いいたします。

  • 数列空間 l^2空間のノルム

    l^2空間 l^2={ {Xn}| Xn∈C Σ|Xn|^2<+∞}   でそのノルムは || x || = sqrt(Σ|Xn|^2)  で定義しますが、  || x || = sqrt(Σ(1/(2^n))|Xn|^2) とかで定義してもよいでしょうか。

  • 直交変換はノルムを保つ

    教科書に 「線型変換 f について、f が直交変換であるための必要十分条件は f がノルムを保つことである」 という定理が載っているのですが、どうも理解できません。 教科書には簡単な証明が載っており、 「f が直交変換ならば、明らかに f はノルム(長さ)を保っている」と記載されています。 直交変換とは内積も保つような線型変換のことですよね? 内積を保つ = ノルム(長さ)を保つ ということが明らかとなる説明をどなたかお願いします。 私は、内積を保っても、なす角が保たれなければ、ノルム(長さ)も保たれないと思ってしまいます。。。 よろしくお願いします。