• 締切済み

場合の数

2種類の記号○、●をいくつか1列に並べて記号をつくる。 (1)並べる符号が全部で4個のとき、    何通りの記号が出来るか。 (2)並べる符号が1個以上4個以下のとき、    何個の記号が出来るか。 という問題なんですけど、 思いついたのは重複組合せなんですけど、 でもそれから並べようとしても どの文字を何個含んでるのかとか 分からなくて解けません!! 分かる方いたら教えて下さい!!

みんなの回答

  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.3

「○、●を並べて記号を作る」といった場合、例えば4個並べるときは、 ○○○●、○○●○、○●○○、●○○○ はすべて区別する(別の記号とみなす)のではないでしょうか? ○(0)、●(1)としたときに、並べる符号がn個ならば、nビットでいくつの記号を表現できるか、ということだと思います。 と考えると、 (1)並べる符号が4個 各符号(4桁)が○か●かの2通りあるから、重複順列で2^4 = 16通り (2)並べる符号が1個以上4個以下のとき 1個 2通り 2個 2^2 = 4通り 3個 2^3 = 8通り 4個 2^4 = 16通り 合わせて 30通り と単純に考えて良いのではないでしょうか。 (1)でn個なら 2^n 通り (2)で1個以上n個以下なら、2+2^2+2^3+...+2^n の等比数列の和ですから 2^(n+1) - 2 通り。

  • DONTARON
  • ベストアンサー率29% (330/1104)
回答No.2

(1)並べる符号が4個の時    4個すべて○1通り    3個が○で1個が●が4通り    2個が○で2個が●が6通り    1個が○で3個が●が4通り    4個すべてが●1通り (2)並べる符号が3個の時    3個がすべて○の時1通り    2個が○で1個が●の時3通り    1個が○で2個が●の時3通り    3個すべて●の時1通り    並べる符号が2個の時    2個とも○の時1通り    1個が○で1個が●の時2通り    2個とも●の時1通り    並べる符号が1個の時は2通り  これを合計したのが答えだと思います。    

  • fukuda-h
  • ベストアンサー率47% (91/193)
回答No.1

並べる順に1、2、3、4番目とすると (1)1番目は○ ●の2通り。どの番号にも2通りあるので 2*2*2*2=16通りでしょう 樹形図でも出来ます (2)は記号が 1個のとき2通り 2個のとき2*2=4通り 3個のとき2*2*2=8通り 4個のとき2*2*2*2=16通り これらの和でしょう。2+4+8+16=30ですね 

関連するQ&A

  • 次の数学の問題を問いてください、お願いします!

    次の問題を解いてください!! 2種類の符号・、-をいくつか並べて記号を作るとき、 (1)並べる符号が3個の場合、全部で何種類の記号ができるか答えなさい。 (2)並べる符号が1個以上4個以下の場合、全部で何種類の記号ができるか答えなさい。 (3)さらに、並べる符号の個数を増やして100種類の記号を作るには・、-を最小限何個まで並べなければならないか求めなさい。

  • 場合の数について質問させてください。

    場合の数について質問させてください。 以下のような文字列は全部で何種類あるか? (質問その1)================ 条件 ================ ★「a,b,c,d,e......,z」(小文字のアルファベット。全部で26個) 「0以上9以下の整数」(全部で10個) 「.」(ピリオド)(1個) の、計37個の文字(以下、「文字」と呼ぶとき、0から9とか記号も含むこととします)から、n個の文字を選び、文字列を形成する ★文字列中に同じ文字が複数回登場しても構わない。 ★文字列の最初に記号(この場合はピリオド)をおいてはいけない ★文字列の最後にも記号(この場合はピリオド)をおいてはいけない ★文字列の中で、記号(この場合はピリオド)が連続してはいけない ★文字列を形成する文字が、「すべて数字」であってはいけない  (つまり、n個の文字のうち、1個以上、「小文字アルファベットまたはピリオド」が含まれなければいけない)  (ちなみに、「073754555555」みたく、一番左が0でも【「すべて数字」】ならだめです) ================ なお、これらを満たす文字列すべてを要素とする集合をX_1と呼ぶことにします。 また、X_1に属する要素の総数を、f(X_1,n)とよぶことにします。 (後述の、別の集合についてもおなじく) で・・・。 ★k=1,2,3,4,5,6のそれぞれの場合について、f(X_1,k)はいくつ? あと、できれば、 ★一般項(?)、つまり、f(X_1,n)も知りたいです。 (質問その2)================ (質問その1)の条件の、一番上を変更し、 「A,B,C,D,E,F....Z」(大文字のアルファベット。全部で26個) も使っていいこととします。(つかわなくてもOK) で、そうすると、計63個の文字から、n個の文字を選び、文字列を形成することになります。 このとき(他の条件は全部同じ)、 これらを満たす文字列すべてを要素とする集合をX_2と呼ぶことにします。 で・・・。 ★k=1,2,3,4,5,6のそれぞれの場合について、f(X_2,k)はいくつ? あと、できれば、 ★一般項(?)、つまり、f(X_2,n)も知りたいです。 (質問その3)================ 質問その1の「.」(ピリオド)を、「-」(ハイフン)に変更します。 他の条件は全て同じとします。 で、全部の条件を満たす文字列すべてを要素とする集合をYと呼ぶことにします。 で・・・、 f(Y,n)=f(X_1,n)であることはわかります。 でもって・・・ ★k=1,2,3,4,5,6のそれぞれの場合について、f( (X_1∪Y) ,k)はいくつでしょうか? あと、できれば、 ★一般項(?)、つまり、f( (X_1∪Y) ,n)も知りたいです。 === 同じように、 ★k=1,2,3,4,5,6のそれぞれの場合について、f( (X_2∪Y) ,k)はいくつでしょうか? あと、できれば、 ★一般項(?)、つまり、f( (X_2∪Y) ,n)も知りたいです。 =================== 以下、参考までに(関係ないのも含まれてるかもしれませんが) ●「p=10,26,11,27とか・・・、k=1,a2,3,4,5,6」について、 p^k、p_C_k の値を計算しておきました。 ↓ http://spreadsheets.google.com/pub?key=0AqIQfyJXnDwXdHBNcFZMNXVpS29Dcm10OWFjU3hqSGc&hl=en&output=html また、素因数分解すると・・・ ●10=2*5 ●11は素数(=1+10) ●22=2*11(=(1+10)*2) ●26=2*13 ●27=3^3(=1+26) ●36=(2^2) * (3^2)(=10+26) ●37は素数(=1+10+26) ●52=(2^2) * 13(=26*2) ●63=(3^2) * 7(=1+10+26*2) ●100=(2^2)*(5^2)(={1+10+26}+{1+10+26*2}=37+63) =================== よろしくお願いいたします。

  • 場合の数

    a,a,a,b,b,cの6個の文字全部を横1列に並べて順列をつくる 両端の文字が異なる順列は何通りあるか という問題がわかりません 両端にaaとbbで4!/3!×2で60-8=52通りだと思ったら44通りになるらしいです どうやったら44通りになるのでしょうか? 教えて下さい

  • メールアドレスの数

    かなり変でうっとおしい質問なのですが 携帯のメールアドレスの種類は何種類つくれるのでしょうか? 最後のキャリアアドレス(ボーダフォン、AU、docomoの@以下の部分) を除き2文字~30文字を限度として数字、ローマ字(大文字、小文字)、記号、全部ひとつひとつ作っていくとどのくらいの数になるのでしょうか? 数字だけでも 00~999999999999999999999999999999の組み合わせが可能なはずです 全て混ぜ作ると何個になるのでしょうか? 変な質問ですがよろしくお願いいたします

  • 場合の数:重複組合せの考え方はこれで良いですか?

    『重複組み合わせ』と『同じものを含む順列』のどちらの 考え方でも解ける問題が場合の数や確率の反復試行などで ありますが、重複組合せについて確認をさせてください。 例題として。 区別の無い5個のボールを3人に分ける場合の数。 (ボールを一つももらえない人がいてもOK) ・同じものを含む順列で考えて ボール5個と仕切り2つで 7!/5!2!=21通り ・重複組合せでは 7つのスペースがあると考えてそこに、仕切りの2つを入れる場所を 決めると残りのスペースにボールが自動的に入り =ボール5個と仕切り2つの順列が決まる 7C2=21 という風に考えていました。 この考えで理屈としても問題はないと思うのでが 今日、初めて重複組合せの公式Hをみてちょっと混乱 してしまいました。 結局は私の考えていた流れと同じになるように理解できるので すが、問題はないでしょうか? 抜けている考えがありそうでちょっと心配で質問をさせて いただきました。 この公式でも扱えるのは二種類のものという理解で大丈夫ですか? 拙い文章で申し訳ありませんがご教授よろしくお願いいたします。

  • 数A「場合の数」の問題について

    次の問題の解き方が分かりません。 (1) 4ケタの整数のうち、各位の数が奇数のものは全部でいくつ? これは、奇数は1、3、5、7、9の5つなので、5×5×5×5で求めることが出来ますよね。 (2) (1)のなかで、各位の数が全部ことなるもの これは、(1)の求め方と同じく、全部違う数字がくるので、5×4×3×2でよいですよね? (3) (1)のうち、各位の数が順位大きくなるものはいくつか?(重複を許す) これは、重複の組み合わせや順列の公式を使ってもとめることができるのでしょうか? 樹形図を描く以外にどういう方法があるのか教えてほしいです! (4) (1)の数を小さいものから順番にならべるとき、5599は何番目の数か? これは、計算で求められますか? 千の位の数が、 5×5×5で125通り、 三千の位の数が同じく125通り、 ここまでで250通り、 5千百の位の数が・・・ というふうに樹形図のように考える以外に何か公式があれば教えてください!! 宜しくお願いします。

  • 場合の数

    6個の文字の順列で (1) aaaabb 6C2×2(a,bの文字を入れ替え)=30 (2)aaabbb のときは 6C3=20 (3)aabbcc のときは 6C2×4C2=90 (4)aaabcc のときは 6C3×3C2=60? 基本的に対称の場合は並びを考える必要がないというのはわかりますが (3)のときは、対称と考えていいのですか? しっかりと理解できていないため(4)がよくわかりません。 組み合わせの考え方はわかります。組み合わせで解こうとすること自体 がまちがっているのですか? 重なっている重複を6!/2!2!2! とかっさなっている個数の階乗で割るという方法があるみたいですが なぜ、これで重複が取り除けるのかわからないのです。。 どなたか、すっきり理解できる考え方を教えてくだされえぇ(泣)

  • 場合の数の組み合わせについてお願いします。

    以下の問題についてどなたかよろしくお願いします。 問題 クリ カキ リンゴがそれぞれダンボール一箱ずつある。 (1) これらの中から合計5個を選びたい。その選び方は何通りか。 (2) クリ カキ リンゴをそれぞれ少なくとも一個は入れて 合計5個を選びたいその選び方は何通りあるか。 以上の(1)と(2)の問題ですが。 (1)も(2)も樹形図を書くと簡単にできますが 問題集の答えには (1) 組み合わせ7c2とあります。答えは樹形図と同じ21通りです。 この7と2はどのように考えるのですか? 又(2)も同じく 組み合わせ4c2とあります。答えは樹形図と同じ6通りです。 これも同じく4と2はどのように考えるのですか? これらの問題は数も少なく数え上げても出来ますが 大きな数字になった場合どのように考えているのかとても知りたいです。 質問A 組み合わせだとは分かりますが又組み合わせの計算もできますが どうして、(1)は7と2と考えるのか (2)は4と2と考えるのか全く理解できません。 どなたか中学生に教えるように教えていただけないでしょうか。 質問B 又(2)は少なくともとありましたので、すぐに余事章が頭にひらめいて しまい、頭がこんがらがってしまいました。 質問ABをどなたか分かりやすく教えていただけないでしょうか? この問題が分からないと私は順列や組み合わせが分かっていないと 考えないといけないでしょうか? よろしくお願いします。教えて下さい。

  • 場合の数

    独学で高校向けの数学を勉強しています。 「袋の中に赤色か白色か青色の玉が4個入っている。全部で何種類の色分けが考えられるか。」という演習問題に取り組んだのですが、まず最初に、1個の玉につきそれぞれ3種類の色のパターンが考えられることから、3*3*3*3=3^4=81通りとして、その中から同一組み合わせのものを除いていこうとして断念しました。次に、4個の玉には必ず同じ種類の色の複数の玉があることに思い付き、「色が一種類の場合」「二種類の場合」「三種類の場合」のそれぞれの場合の数を考えてみました。色が一種類と三種類の場合はそれぞれ3通りということはすぐに分かり、色が二種類の場合は、(3色から2色を選ぶ場合)3C1*(4個の玉の2色の組み合わせは、2個の玉を既定の2色に固定して、残る2個の玉の色の組合わせと考え)3=9とし、3+3+9=15通りという答えを得ました。しかし、この解き方はいちいちケース分けを必要としますし、色の種類や玉の数が多くなった場合にとても混乱しそうです。何かもっとスマートで優雅な解き方はあるのでしょうか。例えば、色の種類がN色で、玉の数がP個の場合における玉の組み合わせの場合の数を考えてみました。 N:1の場合→Pが1,2,3…p個と増えるにつれて、場合の数は、1,1,1…1。 N:2の場合→同様に、場合の数は、2,3,4…(p+1)。 N:3の場合→同様に、場合の数は、3,9,15…「?」。 N:qの場合→q,「?」,「?」…「?」 行列表に並べ直してみた場合、法則性というか、一般式で表すことは可能でしょうか。よろしくお願いします。

  • 場合の数

    「9人を3人ずつ、3つの組に分ける方法」 この問題を9C3*6C3=1680 答、1680通り とといたのですが、実際答えは280通りでした。どこが間違っているのでしょうか。 それと、もう1問 「a,a,b,b,cの5個の文字から4個を選んで1列に並べる方法は何通りあるか。また、そのうちa,b,cのすべての文字が現れるのは何通りあるか。」 この問題が、 5P4=120 ここまでしか書けませんでした。 この問題はこんどの学校の試験範囲なんです。 どなたか解ける方はいますか?解ける方は回答つきでお願いします。