• 締切済み

至急お願いします

{1} 1<p<+∞とする。f,g:[0,1]→R(実数)とする。 「f」=[∫(f(x)の絶対値のp乗)dx]^(1/p) (積分区間は0から1) とおくと三角不等式「f+g」≦「f」+「p」 を示せ  ヒント:「st≦(s^p)/p+(t^q)/q ただし(1/p)+(1/q)=1が成り立つとする」を使う(s,t∈(0,+∞),p,q∈(1,+∞)である) {2} 次の条件を満たす連続関数f:[0,+∞)→を具体的に構成せよ  (1)f(x)≧0(すべてのx≧について)  (2)どんなn∈N(自然数)についてもf(Xn)≧nをみたすXn∈[0,+∞)が取れる  (3)∫f(x)dx(積分区間0からR)→0(R→+∞)  

みんなの回答

回答No.1

1はいわゆるMinkowski(ミンコウスキー)の不等式です。L^pがノルム空間であることの公理の一つです。ヒントのst≦(s^p)/p+(t^q)/q はヤングの不等式と呼ばれ,両辺の対数を取って,logの凸性を利用すれば示せます。そのあと「ヘルダーの不等式」という不等式を示して,それを利用してミンコウスキーの不等式は示されます。この辺のことは関数解析の本なら必ずのっていることなので,それを参考にしてください。(ていうか書くのが面倒なだけですが。) 2は分かりません。ごめんなさい。ていうかfは条件1,3から恒等的に0であるような定数関数にしかならないのでは??

beatle56
質問者

補足

まだ大学1年なんで関数解析の教科書持ってないんです。なんかいい参考URLないですか。 あと3日ぐらい前に質問した、「ていらー」というbeatle56の書いた問題もできれば教えてくれませんか。誰も答えてくれないんで。  

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ルベーグ積分の収束について

    以下の定理について質問があります。 X∈Rとする。 可積分関数の列{f_n(x)}(n≧1)が Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx<∞ をみたせば Σ(n=1~+∞)|f_n(x)|も可積分で Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx=∫(積分区間はX)Σ(n=1~+∞)|f_n(x)|dx 以上の定理について、何故n≧1なのでしょうか? Σ(n=-∞~+∞)∫(積分区間はX)|f_n(x)|dx<∞ の場合は成り立たないのですか? どなたか詳しい解説をよろしくお願い致します・・・。

  • 広義積分の問題を教えてください。

    fとgを区間I=(0,∞)で定義された連続非負関数で、この区間で広義積分可能であるとします。 さらに、 f(x)→0 (x→0) xg(x)→0 (x→∞) を満たしているとき、 lim[n→∞] n∫f(x)g(nx)dx = 0 (積分区間はI) が成り立つことを示したいです。 以下のように積分区間を0から1,1から∞にわけて、 それぞれ評価しようとしましたがうまくいきません。 具体的には、 J=n∫f(x)g(nx)dx とおいて、 J= n∫f(x)g(nx)dx + n∫f(x)g(nx)dx (最初の項を(1) 2つめの項を(2)として) (1)の積分区間は0~1 (2)の積分区間は1~∞ (1)において、g(nx)が非負なので、平均値の定理から、 (1)=nf(Cn)∫g(nx)dx となるような、nに依存する値 Cn∈[0,1]が存在。 nx=tと置換すれば、 (1)=f(Cn)∫g(t)dt    (積分区間は0からnに変化) というキレイな形になり、 ∫g(t)dt  は、gが広義積分可能なことから、有限値に収束。 このままf(Cn)が0に収束してくれれば良いんですが、 Cnは [0,1]上 特に性質なくいろんなところをとりえます。 だから、Cnが単調減少して、仮定の条件をつかって クリア!みたいなことにはならないのです。 根本的に方針が違うのだと思うのですが、 どなたかヒントでもいいので教えてください。

  • 証明問題

    区間[a,b]でf(x),g(x)が連続であるとき、任意の実数tに対して  b  ∫ {tf(x)+g(x)}^2dx≧0 …(1) a がなりたつことに着目して、不等式   b           b        b (∫ f(x)g(x)dx)^2≦∫ {f(x)}^2dx∫   a a a {g(x)}^2dx …(2) が成り立つことを証明する。 できれば、くわしくおしえてください ぜんぜんわからないので

  • 広義積分の問題を教えて下さい

    次の問題の答えを教えて下さい。 1.次の広義積分を求めよ。ただし、r,kは正の定数とする。 (a)∫(rから∞)dx/x^2 (b)∫(0からr)dx/√r-x (c)∫(-∞から0)e^(kx)dx (d)∫(0から1)dx/x^2の三乗根 (e)∫(1から∞)dx/x(1+x) (f)∫(0から1)√(x/1-x)dx 2.次の広義積分を求めよ。 (a)∫(-1から1)dx/x (b)∫(-1から1)dx/x^2 (c)∫(-∞から∞)dx/x^2+1 3.広義積分I=∫(0からπ/2)log(sinx)dxの値を、次のようにして求めよ。 (a) I=∫(π/2からπ)log(sinx)dx=∫(0からπ/2)log(cosx)dxが成り立つことを示せ。 (b)x=2tとおいて2I=∫(0からπ)log(sinx)dxの値を計算することによって、I=-(π/2)log2であることを示せ。 4.s>0として、ガンマ巻数Γ(s)=∫(0から∞)e^(-x)x^(s-1)dxについて式Γ(s+1)=sΓ(s)が成り立つことを示せ。 5.p>0,q>0として、ベータ関数Β(p,q)=∫(0から1)x^(p-1)(1-x)^(q-1)dxについて式Β(p,q)が成り立つことを示せ。 お願いします。

  • 受験数学 積分の問題の説明お願いします。

    積分の表記があっているのか分からないのですが、ご了承ください。 ∫[-1,1]f(x)dx ←積分区間-1から1です。 =∫[-1,1](x^2-4x+p)dx =2∫[0,1](x^2+q)dx ここの変形がよく分かりません。 ∫[-1,1](x^2-4x+p)dx =2∫[0,1](x^2-4x+p)dx だと思ったのですが、正答で何がされたのかが分かりません。

  • 微積分の証明問題についての質問です。

    微積分の証明問題についての質問です。 xの2乗をx^{2}のように表しています。 f:R^{n} → R , p∈R とする。 fが微分可能のとき、次の(1),(2)が同値であることを示せ。 (1)任意のα>0 と(x1,x2,…,xn)∈R^{n} に対して、 f(αx1,αx2,…,αxn) = α^{p}f(x1,x2,…,xn) …(※) (2)任意の(x1,x2,…,xn)∈R^{n}に対して、 Σ[k=1,n]xk{∂f(x1,x2,…,xn)/∂xk} = pf(x1,x2,…,xn) …(♯) ヒントとして、 ・(1)⇒(2) (※)の両辺をαで微分して、α=1とおく。 ・(2)⇒(1) F(x1,x2,…,xn,α) := α^{-p}f(αx1,αx2,…,αxn) を考えて、 ∂F(x1,x2,…,xn,α)/∂α = 0 を示せ。 が与えられています。アドバイスお願いします。

  • 行列の写像のwell-definedの証明ができま

    宜しくお願い致します。 N_n:={X;Xはn×n正規行列}とし,2つの写像f:R→R,F:N_n→R^{n×n}を f(x):=Σ_{k=0}^∞a_kx^kとし,Fは X=P^t diag(λ_1,λ_2,…,λ_n)P (但し,Pは直交行列,diag(λ_1,λ_2,…,λ_n)は対角行列)と書けるので, F(X):=P^t diag(f(λ_1),f(λ_2),…,f(λ_n))Pと定義するとFはwell-definedである事を示す問題です。 [証] 背理法を使って証明する。 X:=P^t diag(λ_1,λ_2,…,λ_n)P=Q^t diag(μ_1,μ_2,…,μ_n)Q…(*)の時 (ここで,λ_1,λ_2,…,λ_n,μ_1,μ_2,…,μ_nはXの固有値となりますね), P^t diag(f(λ_1),f(λ_2),…,f(λ_n))P≠Q^t diag(f(μ_1),f(μ_2),…,f(μ_n))Qとなったと仮定すると, 左辺=(Σ_{k=1}^n p_{ki} f(λ_k) p_{jk}), 右辺=(Σ_{k=1}^n q_{ki} f(μ_k) q_{jk}), なので ∃l,m∈{1,2,…,n}; Σ_{k=1}^n p_{kl} f(λ_k) p_{mk}≠Σ_{k=1}^n q_{kl} f(μ_k) q_{mk}で, (*)より, ∃r,s∈{1,2,…,n}; λ_r≠f(λ_r)または,μ_s≠f(μ_s)が言える。 従って, λ_r≠Σ_{k=0}^∞a_kλ_r^kまたは,μ_s≠Σ_{k=0}^∞a_kμ_s^k まで言えたのですが,ここからどうやって矛盾が引き出せますでしょうか?

  • 積分 証明 問題

    積分 証明 問題 (1)∫[0~π](x・sinx)dxをx=π-tとおいて求めなさい。 (2)f(x)が区間[-1,1]で連続であるとき、次の等式が成り立つことを証明せよ。 ∫[0~π]x・f(sinx)dx =π/2∫[0~π]f(sinx)dx (1)はπと求めることが出来ました。 (2)も(1)と同様に置換して証明できました。 問題にある「f(x)が区間[-1,1]で連続であるとき」に関しては 特に何も考えなかったのですが「f(x)が区間[-1,1]で連続であるとき」 とは何を言いたいのでしょうか?sinxの周期は-1から1なので、 単純にf(x)が連続のときと解釈してよいですか? 以上、ご回答よろしくお願い致します。

  • ∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dx の証明

    ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。 有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。 定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。 #以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。 ヒント fに対する不足和、過剰和を、それぞれ、 s(f,Δ)、S(f,Δ)というふうに書けば、s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) に注意せよ。 同書の略解 分割Δの小区間[a(i-1),a(i)]における f+g,f,g の下限をm(i),n(i),p(i)とすれば m(i)≧n(i)+p(i)、ゆえにs(f,Δ)+ s(g,Δ)=Σn(i)(a(i)-a(i-1)) + Σp(i)(a(i)-a(i-1))≦Σm(i)(a(i)-a(i-1))=s(f+g,Δ)同様にS(f+g,Δ)≦S(f,Δ)+ S(g,Δ) だから、inf(S(f,Δ))=sup(s(f,Δ))、inf(S(g,Δ))=sup(s(g,Δ))なら、inf(S(f+g,Δ))=sup(s(f+g,Δ))=、sup(s(f,Δ))+sup(s(g,Δ)) となっていますが、最後の等式がどうしても出てきません(その前までは理解できました)。行間を埋めていただけるとありがたいです。 s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) からそれぞれの辺のsup、infを考えるとできるのではないかとも思われるのですが、どうしてもわかりませんでした。 よろしくお願いいたします。

  • 定積分と面積・・

    「曲線C:x^3-x^2とCに接する異なる直線L,Mがある。CとLとで囲まれた部分の面積と、CとMとで囲まれた部分の面積とが等しいとき、LとMとは平行であることを示せ」という問題の解説で「f(x)=x^3-x^2とおくとf'(x)=3x^2-2xであるから曲線C上の点(α,α^3-α^2)における接線の方程式はy=(3α^2-2α)(x-α)+α^3-α^2 ∴y=(3α^2-2α)x-2α^3+α^2この右辺をg(x)とおくと、f(x)-g(x)=x^3-x^2-(3α^2-2α)x+2α^3-α^2=(x-α)^2(x+2α-1) β=1-2αとおくと f(x)-g(x)=(x-α)^2(x-β) でえあり、CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)・・・・・」と続いていくのですが「CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)」のところのいみがわかりません・・  教えてください!!