• ベストアンサー

線形計画

線形計画の双対問題についてわからないところがあるので教えてください。 http://home.hiroshima-u.ac.jp/~kato/b_mp1/MP1_12_20061219_an...双対問題' の(2)の問題の解答のところなんですけど 最初に標準形に変換するときなんでわざわざX2=X2+ - X2- としているのでしょう? 普通にX3を追加して=にしMAXの符号を変えてMINにすればいいのではないでしょうか? またここではX2を1行目のようにしてますがこれはX1ではいけないのでしょうか? わかりにくい質問かと思いますが教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

リンクがきちんと貼れていないようです。 正しいリンク先は、 http://home.hiroshima-u.ac.jp/~kato/b_mp1/MP1_12_20061219_answers.pdf です。 問題に、「x1≧0 , x2 は自由変数」とあります。 これは、x1 は非負条件がついていますが、 x2 には非負条件がついていない(負でもよい)ことを意味します。 しかし、標準形では、すべての変数に非負条件がつき、 x1≧0 , x2≧0 , … , xn≧0 になります。 ですから、何も工夫をしないと、 subject to  a11x1 + a12x2 ≧ b1  a21x1 + a22x2 = b2  x1≧0 , x2 は自由変数 を解きたいのに、 subject to  a11x1 + a12x2 ≧ b1  a21x1 + a22x2 = b2  x1≧0 , x2≧0 を解くことになってしまいます。 それで、x2 = x2[+] - x2[-] とおきます。 x2[+]≧0 , x2[-]≧0 の条件をつけても、 x2 はどんな値も(正でも負でも)とり得ることになります。 それで、 subject to  a11x1 + a12x2 ≧ b1  a21x1 + a22x2 = b2  x1≧0 , x2 は自由変数 を解くことは subject to  a11x1 + a12x2[+] - a12x2[-] ≧ b1  a21x1 + a22x2[+] - a12x2[-] = b2  x1≧0 , x2[+]≧0 , x2[-]≧0 を解くことと同じことです。 あとは、x3 を追加して max を min に変えればOKです。

関連するQ&A

  • 非線形計画法 主-双対問題

    次のような制約付き最小化問題を考えています。 目的関数は非線形です。 min x1^2+x2^2 s.t. -x1-x2+4<=0 x1>=0 x2>=0 この問題の場合最適解は(x1,x2)=(2,2)であり、その時の目的関数値は8となります。 次に次式のような双対問題を考えます。 g(x)=-x1-x2+4とおき 双対関数 φ(u)=inf{x1^2+x2^2+u*(-x1-x2+4) : x1>=0 , x2>=0} =inf{x1^2-u*x1 : x1>=0}+inf{x2-2-u*x2 : x2>=0}+4*u 上記においてもしu>=0であれば、x1=x2=(u/2). (なぜなら、x1^2-u*x1をx1で微分するとx1=u/2となる。) u<0であるならばx1=x2-0であることに注目しますと。 φ(u)=-(1/2)*u^2+4*u for u>=0 =4u for u<0 となります. 双対関数がu>0の場合は最大がu=4であることに注目すると、その時の目的関数は8であり、主問題と双対問題の最適な目的関数値は一緒となります。 次に主問題を次のように制約を増やした最小化問題を考えます。 min x1^2+x2^2 s.t. -x1-x2+4<=0 -2*x1-3*x2<=0 x1>=0 x2>=0 これの最適解は上記の問題と同じにならないといけないのですが、 例えば、ラグランジュ関数F(x1,x2,λ1,λ2)を次のようにおき各変数で偏微分して最適解を求めると(λ:ラグランジュ乗数)、 F(x1,x2,λ1,λ2)=x1^2+x2^2+λ1*(-x1-x2+4)+λ2*(-2*x1-3*x2) 最適解はx1=12, x2=-8であり、その時の目的関数は208となり、前問と異なった解が得られました。 この原因は明確であり、ラグランジュ関数の中の各制約式が、偏微分して解を得ることで不等式制約ではなく等式制約とみなされたためです。 偏微分して解を求めなければいいのですが、どうしても偏微分でかいを求めたいために、、前門で示した双対問題を導入しましたが、結果は双対問題のほうでも偏微分するので一緒でした。 しかし、双対問題で得られた解。つまりuは主問題のλに相当し、KKT条件より必ず正である必要があるので、双対問題を解き、uが負になった制約式はの除いてそのあともう一度問題を解きなおす。つまり2番目の問題を前問に置き換える。 っといったことをして問題を解決させようとかんがえていますが、これは理論的に正しいのでしょうか。 これはほんの例題ですが、複数個の不等式制約式を扱い、かつ偏微分可能な最適化問題を解く際に、最適解に対して全てが有効制約になるとは限りませんので、どうかうまくいくアドバイスをください。

  • 線形計画問題の双対問題について疑問

    線形計画問題の双対問題について疑問 主問題  minimize 2x1 + 5x2 sublect to 3x1 + x2 <=3 2x1 + x2 >=5 x1, x2>=0 の双対問題はどうなるのですか? たとえば、 主問題  minimize 2x1 + 5x2 sublect to 3x1 + x2 >=3 2x1 + x2 >=5 x1, x2>=0 なら、 双対問題  maximaize 3y1 + 5y2 sublect to 3y1 + 2y2 <=2 y1 + y2 <=5 y1, y2>=0 となるということはわかるんですが・・・・ よろしくお願いします。

  • 線形計画問題について教えてください。

    学校の講義で線形計画問題を習いまして、宿題を出されたのですが、授業をしっかりと聞いておらず、後でレジュメを見て理解しようとしましたが、できませんでした。配られたレジュメを見ても、理解できませんでした。「標準形」の説明のところで記号がたくさん出てくるのでどうしてもわからないのです。 かような泣き言を書き、課題をほぼそのまま書いてしまいましたが、できれば解き方を教えていただきたいです。 問題 1 X(1) + 2X(2) + X(3) ≧ min 条件 X(1) + 5X(2) + 2X(3) ≧ 8 3X(1) + 2X(2) + 2X(3) ≧ 7 X(1)≧0 , X(2)≧0 , X(3)≧0 <1>問題1の双対問題を書いて下さい。 <2>その双対問題を解いて下さい。 <3>問題1を解いて下さい。 ※ ()の中の数字は化学でよく使う数字の右下 に付く小さな数字表しています。

  • 数理計画法の双対問題の解法について

    私は現在、以下のような問題に取り組んでおります。 問題:次の線形計画問題の双対問題を解け。 minimize: z = 2x1+3x2+8x3 2x1+2x2+6x3 ≥ 6 x1+2x2+4x3 ≥ 4 x1,x2,x3 ≥ 0 私はこの双対問題のシンプレックス表を用いて解く方法が分かりません。 どなたか解答・解説をお願いします。

  • 【至急!!】線形計画問題教えてください。

    次の問題を双対シンプレックス法により解け。 minimize 15x1+7x2+12x3 sub to x1x+2x+x3≧1 3x1+x2+x3≧2 x1,x2,x3≧0 双対シンプレックス法での解き方がいまいち分かりません。 双対シンプレックス法での解き方が分かる方教えてください(>_<)

  • 線形計画法について

    線形計画問題で、 制約条件: x1+4x2+x3≦2 x2+x2+2x3≦3 x1,x2,x3≧0 目的関数: max(5x1+8x2+6x3) という問題がでたのですが、 ご覧の通り3変数の問題なのですが図式解法を用いて解けという指定なのです。 2変数ならすんなりできたのですが、3変数となると上手くいきません。 どなたかわかる方いたら是非ご教授願います。

  • 線形計画法の問題です

    P:最大化c^Tx(c^Tはcの転置)   条件Ax<=b   x>=0 ただし、Aはm*n行列、bはm次元ベクトル、cはn次元ベクトル、xはn次元 変数ベクトルである。ベクトルはすべて列ベクトルとし、c^Tはcの転置を表す。 問題Pは最適解を持つと仮定し、目的関数の最大値をfと表す。また、問題P に関連して、m次元ベクトルuをパラメータとする次の線形計画問題を考える。 P(u):最大化c^Tx-u^T(Ax-b)     条件x>=0 問題P(u)の目的関数の最大値g(u)と表す。ただし、問題P(u)が有界でない 場合はg(u)=無限大と定義する。以下の問いに答えなさい。 1)問題Pの双対問題を書きなさい 2)任意のu>=0に対して、g(u)>=fが成り立つことを示しなさい 3)min{g(u)|u>=0}=fが成り立つことを示しなさい。ただし、線形計画問題 に対する強双対定理を用いて良い。 以上の問題をお願いします。

  • 線形計画問題を単体法を使って解く問題です。

    タブローを使ってとこうとしたのですが制約式にx_2の項がない場所があったため0で割れず行き詰まってしまいました。 解答も解説もなく行き詰まっているため、親切な方詳しい解答・解説をおねがいします。 主問題 Max 2x_1+3x_2+x_3 s.t.x_1+x_2+x_3≦1 -2x_1+x_3≧1 x_1,x_2,x_3≧0 1)単体法を用いて解き、最適解と最適値を過程を記し求めよ。 2)双対問題を記し、1)の結果と相補性定理を用いて最適解を求めよ。 3)ある非負の実数kを用いて主問題の目的関数を(2+k)x_1+3x_2+x_3と変化させた線形計画問題をP'とする(制約式は同じ) 1)で求めた最適解がP'の最適解で在り続けるためのkの範囲を求めよ。

  • 線形符号の問い

    ネットで検索できるPDFやPPなどの資料はいくつかみたのですが、いまいち分かりませんでしたので、質問させていただきたいのですが、 情報ビット、x1、x2、x3に対し、検査ビットc1=x1+x2、c2=x2+x3、c3=x1+x3 を付加した(6,3)の線形符号についての問いで、 この符号によって、単一誤りの訂正が可能であることを示しなさいとあるのですが、 解答に、 「符号語は次の8種類、すべての符号語とそのハミング重みを列挙すると 00000 001011 010110 011101 100101 101110 110011 111000 で、全0以外で最小のハミング重みは3、t0=(3-1)/2=1 よって単一誤りの訂正可能」 とあるのですが、この符号語8種類はどこからでてきたのでしょうか。 また、単一誤り訂正可能の条件を教えていただきたいです。

  • 線形計画問題について教えてください。

    この線形計画問題で、条件を1)と2)で変えたときに 最適解がどう違うのでしょうか?教えてください。 最大化:X1+2X2-X3+3X4+X5+2X6 条件:2X1+X2+3X3+X4+4X5+3X6≦7 1)0≦Xj≦1,j=1,2,3,4,5,6 2)Xj∈{0,1},j=1,2,3,4,5,6