• ベストアンサー

古典制御のゲイン交差周波数と速応性の関係について

制御工学を独学しているものです。 「相補感度関数において、バンド幅(ゲイン交差周波数)を高くすれば それだけ制御帯域が増えるので、速応性がよくなる。」 ということらしいのですが、納得いきません。 バンド幅(ゲイン交差周波数)を高くすればそれだけ制御帯域が増え るというのはゲイン線図を見れば明らかなので納得なのですが、なぜ それが速応性の改善につながるのか理由がわかりません。 また、「ピークゲインが減衰性の指標になる」 というのもなぜそうなるのか理由がわかりません。 どなたか古典制御に詳しい方教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
noname#101087
noname#101087
回答No.2

>「バンド幅はそもそも周波数領域での制御帯域の幅を表している、ただそれだけだと思うのですが、なぜ制御帯域が大きくなると、ステップ応答が速くなるのでしょうか? バンド幅の拡げ方のうち、「(1) 単に周波数シフトする」のが判り易いでしょう。 簡単な例の一次ポール伝達関数  H(s)=G/(s+a)   …s=j*(2πf), フラット部の最大ゲイン = H(0) = G/a だと、fc=a/2πが ローパス特性の3dB ダウン・カットオフ周波数(つまりバンド幅)です。 そのステップ応答は H(s) にステップ波形 u(t) のラプラス変換 1/s を掛けた  a/{s(s+a)}=(1/s)-{1/(s+a)} の逆ラプラス変換として得られ、   u(t)-e^(at) = 1-e^(at)  (t≧0) という結果です。(ゲイン値は無視) この応答波形は、0 から立ち上がり 1 へ収束しますが、収束に要する時間τ(時定数)は a の大きさに反比例します。 たとえば、カットオフ周波数(バンド幅) fc=a/2πが二倍になれば、収束に要する時間τは半分になる、という勘定が 成立するわけです。 ------------------------------- [参考] http://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B >ラプラス変換 ------------------------------- ラプラス変換の定義式をみれば、例示した伝達関数に限らず、シェーピングはそのままで周波数応答の周波数スケール を二倍すれば、時間波形応答の時間スケールは半分になることがわかります。

hiro1863
質問者

お礼

なるほど!!問題解決です。 本当に助かります。 どうもありがとうございました。

その他の回答 (1)

noname#101087
noname#101087
回答No.1

>「相補感度関数において、バンド幅(ゲイン交差周波数)を高くすればそれだけ制御帯域が増えるので、速応性がよくなる。」ということらしいのですが、納得いきません。 >バンド幅(ゲイン交差周波数)を高くすればそれだけ制御帯域が増えるというのはゲイン線図を見れば明らかなので納得なのですが、なぜそれが速応性の改善につながるのか理由がわかりません。 バンド幅の拡げ方には、開ループゲインのシェイピング特性を  (1) 単に周波数シフトする  (2) ゼロ・ポールを増やす などの選択肢があります。 どちらでもバンド幅を拡げれば、たとえばステップ応答はバンド幅に反比例して速くなりますね。 あとはチューニングでのクリティカル気味とかオーバーシュート気味とかの味付けでしょうか。 >また、「ピークゲインが減衰性の指標になる」というのもなぜそうなるのか理由がわかりません。 ゼロ・ポールを増やしたり、s-平面の実軸だけでなく複素配置にして減衰傾斜を稼ぐと、相補感度関数のピークゲインも尖がります。 「減衰性」(シェイピング特性のスロープ傾斜の緩急。もしかして誤解 ?)の目安といえそうですが。 (何か、微妙にポイントがずれているような気もします。.... もしそうなら補足してください)

hiro1863
質問者

補足

回答ありがとうございます。自分がいまいちよくわからないのが 「たとえばステップ応答はバンド幅に反比例して速くなりますね」 の部分なのですが、なんでバンド幅に反比例してステップ応答が 速くなるんですか?バンド幅はそもそも周波数領域での制御帯域の幅 を表している、ただそれだけだと思うのですが、なぜ制御帯域が大きく なると、ステップ応答が速くなるのでしょうか? そこの数式的もしくは直感的根拠が知りたいんです。

関連するQ&A

  • 制御におけるゲイン、交差周波数(=速応性)の意味

    サーボ系の制御についてなんですが、制御においてゲイン、交差周波数が表しているのが何なのか分かりません。 電子回路ならゲインは入出力の比の値であることはイメージできるんですが… どうか説明をお願いします。

  • 制御の周波数領域と時間領域について

    制御系設計の基本的な目標は性能評価仕様を満足させることですが、性能評価仕様には一般に 周波数領域の仕様(周波数の関数で表現された量) 時間領域の仕様(時間応答を用いて表現した量) を説明せよ。 という問題があるんですが、どなたか教えていただいてもよろしいでしょうか? 周波数領域の仕様だったら ・ゲイン交差周波数 ・位相余裕 ・ゲイン余裕 ・位相交差周波数 ・バンド幅 ・ピークゲイン 時間領域だったら ・ゲイン ・固有角周波数 ・減衰定数 ・極 なんかがあると思いますが、他にありますか? それとも私は問題を履き違えてますか?

  • ゲイン曲線とステップ応答の関係について(制御工学)

    ゲイン曲線から読み取ることができる 定常ゲイン(ω=0での値)・ピーク値(ゲインの最大値)・バンド幅(ゲインが最大値/√2となるときの各周波数) から、単位ステップ応答へどのような影響が出るかがよくわかりません。 今のところ自分で考えたことは、 ・定常ゲイン 定常ゲインが∞で無い場合は、定常偏差が残るということが、最終値の定理からわかる ・ピーク値 減衰特性に影響すると書いてありましたが、ピーク値が小さいと、閉ループ伝達関数を求めて実際に求めた値が小さくなるので減衰が早いってことなのかな・・・? ・バンド幅 速応性に影響すると書いてありましたが、ここはまったくわかりません。 バンド幅が大きいほど、高周波数の信号でも追従できるということはわかりますが。。。 このような状態です。ご教授いただければ幸いですペコリ(o_ _)o)) 図が入るところなので、説明が難しいようでしたら、参考になるようなURLでも構いません。

  • 制御工学の周波数応答 1次遅れのボード線図について。

    制御工学の周波数応答 1次遅れのボード線図について。 (問)下の伝達関数をボード線図に示せ。 G(s)=s/(s+1)(s+10) この問題はゲイン線図と位相線図を書きます。 ゲイン線図のほうは出来ましたが、位相線図の方ができません。 特に重ね合わせをするところにダブってしまって、授業では位相線図も近似の線しかやっていませんので、近似式でしか書かないといけないのですが… どうか、ご指導の方をよろしくお願いします。 (*ps.念のためにゲイン線図を作ったので、間違いの原因が分かりやすくなれば幸いです。)

  • 周波数特性と制御

    入力信号が直流可変信号、出力が定電圧となる回路で、周波数特性からどのようにフィードバック制御に役立てるかピンときません。 直流小信号を増幅する回路とその出力に負荷が接続されているとき、負荷に与える電圧をフィードバック制御で操作したいです。 ボード線図を求めることはできるのですが、扱いに困ってます。 というのも、周波数特性を求めたところで所詮、入力信号は直流です。もちろんフィードバック制御をするので、直流といえども立ち上げ制御のときは入力信号も変動しますが少なくともsin関数ではありません。 このような構成でどのように周波数特性を制御に役立てることができるか教えていただけないでしょうか?

  • 古典制御と現代制御

     ふと疑問に思ったのですが、古典制御と現代制御の違いは分かるのですが、どちらがどのような長所・短所があるのかイマイチ分かりません・・・。  ちなみに僕は古典制御も現代制御も勉強して、式うんぬんや方法うんぬんくらいは一応分かる程度です。  そして、先生や先輩の話を聞くと、 「結局はPIDに落ち着くんだ」 と言います。 (もしかしたら先輩の場合は先生の受け売りなのかもしれませんが)  では、現代制御ってどのような時に使うのでしょうか? その他にも古典制御が使える場面、現代制御が使える場面を教えて下さい。  また、 古典制御→周波数領域 現代制御→時間領域 ですが、その違いがよく分かりません。  周波数領域での解析、時間領域での解析とそれぞれの長短が分かりません。  内容をまとめると、 (1)結局はPID? (2)古典制御と現代制御の長短 (3)それぞれの制御論を使う場面 (4)周波数領域と時間領域の違い、長短 を教えていただきたいです。  全て分かる方、どれか1つだけでも分かる方、どうぞよろしくお願いいたします。

  • 遮断周波数のゲインがなぜ-3dBとなるのか?

    私が知っている遮断周波数の知識は・・・ 遮断周波数とはシステム応答の限界であり、それを超えると減衰する。 <遮断周波数の定義> 出力電力が入力電力の1/2となる周波数を指す。 電力は電圧の2乗に比例するので Vout / Vin = 1 / √2 となるので ゲインG=20log( 1 / √2 )=-3dB となる。 ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2) となるのでしょうか? 定義として見るにしてもなぜこう定義するのか ご存じの方いらっしゃいましたら教えて下さい。

  • 制御工学のゲインと位相について

    私は、大学の電気工学科で古典制御の勉強をしているのですけど、 ゲインと位相について、  G(jω)=20log |jω/2 - 1 という伝達関数があるとして  ゲインは 20log|√1+ω^2/4|[dB]で    位相を求めるときは -tan^-1 ω/2となるのでしょうか? そうなった場合は、ボード線図で記入したら、位相のだけ負にいくので変だと思うのですけど、教えてくれませんか?

  • フィードバック制御系の安定性について

    フィードバック制御系の安定性について教えていただきたい事があります。 負帰還のフィードバック制御系を構成した際に閉ループ系での安定性を確認するのに、開ループでのボード線図においてゲインクロス周波数(ゲインが0dbとなる周波数)、位相クロス周波数(位相が-180度となる周波数)での位相余裕、ゲイン余裕から判定する方法がありますが、このゲインが0db以上でなおかつ位相が-180度以上回ったとき不安定になるという条件は、全周波数帯域において言えることでしょうか? というのも、どこかでこの安定判別はゲインクロス周波数以上の周波数で評価するように聞いた覚えがありましたので。 システムによっては開ループのボード線図が、コントローラによって低域ゲイン0db以上に持ち上げたゲインクロス周波数以前の制御帯域内において位相が-180度を下回っているのですが、これは不安定で発振する可能性があるのでしょうか? そもそもこの不安定は、入力した信号に対しコントローラ、プラントを通った出力信号の位相が入力信号に対して位相が180度ずれて出てきたものを負帰還でまたコントローラに入力するので、発生するものと理解しているのですが、だとすると制御帯域内であろうと開ループ特性で見ると同じように不安定条件を満たしていると思うのですがどうなのでしょうか? ただ、そのときの閉ループのボード線図を見ると、制御帯域内においてはゲインが0dbでフラット、位相も0dbに整形されているので、不安定にならないような気がします。 どのように考えればいいのかわからず戸惑っています。制御に詳しい方、どうかご回答よろしくお願いいたします。

  • 位相交差角周波数 と ゲイン余裕 について

    位相交差角周波数は周波数応答関数の虚部が0になる点で合っていますでしょうか。 一巡伝達関数が G(s)H(s) = K/s(s^2+2s+4) のとき、 周波数応答関数 G(jω)H(jω) = (-1/ω)*[2ωK/{4ω^2+(ω^2-4)^2}-K(ω^2-4)j/{4ω^2+(ω^2-4)^2}] で合っていますでしょうか。 ということは、 (ω^2-4)/{4ω^2+(ω^2-4)^2} = 0 ω=2 が位相交差角周波数ということでしょうか。 また、ゲイン余裕というのは gm = -20ln|G(jω)H(jω)| gm = -20log(10,|G(jω)H(jω)|) のどちらが正しいのでしょうか。自然対数なのか、底が10の対数なのか、分かりません。