• 締切済み

助けてください!

A=可換Banach環 A(可換Banach環)が単位元を持っているとき、Aは単位的であるという。 A=C0(R)≡{f:R→C} (1)fは連続である                (2)lim f(x)=0                x→∞ このとき A=C0(R)は単位的でないことを証明してください。 て問題なんですがさっぱりわかりませんよろしくおねがいします

みんなの回答

  • nakaizu
  • ベストアンサー率48% (203/415)
回答No.1

単位元の意味がわかっていれば当たり前のことです。 eがAの単位元とはAの任意の元xに対してex=xe=xが成り立つことです。 この場合、Aは関数の集まった環ですから単位元も関数になります。単位元e(x)があったとすると Aの任意の関数f(x)に対してf(x)e(x)=f(x)を満たさなければいけません。このような条件を満たすのはe(x)=1という定数関数だけです。 ところがe(x)=1という関数は極限の条件(2)を満たしていないのでAに含まれません。つまり、Aは単位元を持ちません。

tyabatake
質問者

お礼

ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 零因子と整域について

    Xが+に対して可換群,・に対して半群をなし,分配法則x(y+z)=xy+xz、(x+y)z=xz+yzをなす時Xを環と呼ぶ。 ・に関しての単位元を持つ環を特に単位的環と呼ぶ。 それでa≠0,b≠0でab=0なる環の元を零因子と呼ぶと思うのですが 実際,単位的環ではなくただの環で零因子を持つような環って存在するのでしょうか? そして零因子を持たない可換な環を整域と呼ぶようですが。 零因子を持たない非可換な環には特に呼び方はあるのでしょうか(非可換な整域?)?

  • 一様連続の証明問題です

    R上で定義された連続関数fが lim[x→+∞] f(x)=0 をみたすとする このときfは[0,∞)上で 一様連続であることを証明せよ. ※証明にはε-δ論法を用いよ という問題なんですが まったく歯がたちません どなたか教えてください お願いします

  • 関数f(x)がC∞-級関数であることの証明

    (1)f(x)が連続関数で、x≠0で微分可能かつ lim[x→+0]f'(x)=lim[x→-0]f'(x)=A (Aは実数) ならば、f(x)はx=0でも微分可能でf'(0)=Aとなることを示せ。 (2) f(x)=0 (x≦0のとき) f(x)=e^(-1/x) (x>0のとき) とするとき、f(x)はC∞-級関数であることを示せ。 *************** という問題で、(1)についてはロピタルの定理から簡単に示せるので、分からない点はありません。 (2)なんですが、x>0のとき任意のn=1,2,3,・・・に対し、{f(x)}^(n)は Σ[k=0→2n]{{a【k】}*e^(-1/x)}/x^kの形に表せます。 ∀rについてCr-級をrに関する帰納法で示したいです。 r=1のときf'(x)={e^(-1/x)}/x^2 だから1回微分可能。また、lim[x→0]f'(x)=0=f'(0)よりf'(x)は連続。 よってr=1のときにCr-級であることが証明されました。 この後、どうやっていいかわからないので教えてください。

  • 連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

    微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>

  • 代数の環の分野の問題です

    代数の環の分野の問題です 可換環Rが与えられたとき文字Xを不定元とする R係数の多項式は p(X)=a_nX^n+a_n-1X^n-1+…+a_1X+a_0 =Σ(i=0からn)a_iX^i (a_i∈R) なる形のものです Xを不定元とするR係数の多項式全体の集合は可換環をなしこの可換環をR[X} とします R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])[X_n] が定義され R[X_1X_2,…,X_n]をR上のn変数多項式環、 その元をR係数n変数多項式というとき n変数多項式は整理すると Σ_(0≦i_1,i_2,…,i_n) a_i_1i_2…i_nX_1^i_1X_2^i_2…X_n^i_n (a_i_1…a_i_n∈Rで和は有限和)とかける ことを示したいです 教えてください 文章分かりにくくてごめんなさい

  • 応用代数の環に関する問題です。

    応用代数の環に関する問題です。 Rを区間[0,1]上で定義された実数値連続関数の全体とする。このとき、Rの任意の2元f, gに加法"+"と乗法"・"を (f+g)(x)=f(x)+g(x) , (f・g)(x)=f(x)g(x) (∀x∈[0,1]) で定義すると、Rは環となる。さらに、任意のc∈[0,1]を固定し、f(c)=0となるRの元fの全体をJcとする。このとき、JcはRの極大イデアルとなることを示せ。 ただし、準同型定理と 「Iは極大イデアル⇔R/Iは体」を使ってよい。 この問題を教えてください。お願いします。

  • 一様連続

    R(実数の集合)上で定義された連続関数fがlim[x→∞]f(x)=0を満たすとする。 このとき、fは[0,∞)上で一様連続であることを証明せよ。 という問題が解りません。解る方は教えてください。

  • ブール環

    環Rの任意の元aに対して、a^2=aが成り立つとき、Rは可換環 である。 の証明について質問します。 [証明] ∀a,b∈Rについてa+b=(a+b)^2=a+ab+ba+b よってab+ba=0. ab=-ab これでは可換とはいえないですよね? a=bとすると…と続ければ良いのでしょうか?

  • ロピタルの定理

    [定理] f(x),g(x)が開区間(a,b)で微分可能で、  lim_{x→a+0}f(x)=0、 lim_{x→a+0}g(x)=0、 g'(x)≠0 のとき、lim_{x→a+0}{f'(x)/g'(x)}が存在すれば、  lim_{x→a+0}{f(x)/g(x)}=lim_{x→a+0}{f'(x)/g'(x)} ________________________________ (proof) f(a),g(a)が定義されていて、f(a)=0,g(a)=0ならば、f(x),g(x)は[a,b)で連続である。 そういう場合は、新しくf(a)=0,g(a)=0と定義すれば、f(x),g(x)は[a,b)で連続となる。 こうしておいて、(a,b)のxをとれば、f(x),g(x)は[a,x)で連続、(a,x)で微分可能、かつ(a,x)でg'(x)≠0だから、コーシーの平均値の定理より、  f(x)/g(x) = {f(x)-f(a)}/{g(x)-g(a)} = f'(c)/g'(c)  (a<c<b) のcが存在し、x→a+0 ならばcも c→a+0 となるから、  lim_{x→a+0}{f(x)/g(x)}=lim_{c→a+0}{f'(c)/g'(c)} lim_{x→a+0}{f'(x)/g'(x)}の存在は仮定から保証されているので、  lim_{c→a+0}{f'(c)/g'(c)}= lim_{x→a+0}{f'(x)/g'(x)}                               (q.e.d) このように、ある参考書に定理の証明があったのですが、この証明で、  "lim_{x→a+0}{f'(x)/g'(x)}が存在すれば" という仮定はなぜ必要なのでしょうか? 簡単なことかもしれませんが、よろしくお願いします。

  • 群環の一般的な定義とは?

    (R,+,・)を可換環(単位的環とは限らない),(G,*)を半群(一般的に群ではなく半群とする)とすると,GにはR左加群が定義できる。 次に,時,A≠φを集合とし単射f:G→Aに於いて, ☆:f(A)×f(A)→f(A)をf(x)☆f(y):=f(x*y)と定義し, ∀r,s,t∈R,∀f(x),f(y),f(z)∈f(G)に対して, (s・f(x))☆f(y)=s・(f(x)☆f(y))=f(x)☆(s・f(y))と定義する。 この時,(A,☆)はR上の多元環になる。 この時の(A,☆)をGのR上の群環と呼び,R[G]と書く。 と解釈したのですが某書に「R[G]は厳密にはGからRへの写像全体として定義される」 と載っていたのですがこれはどういう事でしょうか? R[G]の定義はR[G]:={f;Aは集合,f:G→Aは単射,多元環を満たす写像☆が存在する}とも解釈してみたのですが。。。