• ベストアンサー
  • すぐに回答を!

不定積分

∫(2x+1/x^2-1)dx です。 自分で計算した所、 ∫(2x+1/x^2-1)dx=∫[{(1/2)/x+1}+{(3/2)/x-1}]dx =1/2log|x+1|+3/2log|x-1|+C とでたのですが、答えは 1/2log|(x-1)/(x+1)|+log|x^2-1|+C となっています。 どこで間違っているのでしょうか? 教えて下さい。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数41
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

1/2log|x+1|+3/2log|x-1| = 1/2*(log|x-1|-log|x+1|) + (log|x+1|+log|x-1|) = 1/2log|(x-1)/(x+1)|+log|x^2-1| ですから、あなたの答えも正解です。 回答では、 ∫(2x+1/x^2-1)dx = ∫1/(x^2-1)dx + ∫2x/(x^2-1)dx          = ∫1/2[1/(1-x)+1/(1+x)]dx + ∫2x/(x^2-1)dx と計算したのでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 答えの解き方まで丁寧にありがとうございました。

質問者からの補足

すいません。疑問に思ったので。 どちらの回答のほうがより良いのでしょうか?

関連するQ&A

  • 不定積分の問題

    (1)∫dx/{(2x+1)√(1-x^2)} (2)∫√(x^2+2x+2)dx/x という問題です。解答と自分の答えが合わず、どこがまちがっているのか分かりません。指摘していただけないでしょうか。よろしくお願いします。 (1)t=√{(1+x)/(1-x)}とおく。 dt=1/(1-x)^2*√{(1-x)/(1+x)}dx 与式=∫1/{(2x+1)√(1-x^2)}*(1-x)^2√{(1+x)/(1-x)}dt =∫(1-x)/(2x+1)dt =2/3∫1/(t^2-1)dt ここからどうしたらいいのか分からなくなってしまいました。 また、解答は1/√3*log{(x+1/2)/(x+2+√(3-3x^2))}となっているのですがどうしてこうなるのかさっぱりです。 (2)t=√(x^2+2x+2)+xとおく。 dt={(x+1)/√(x^2+2x+2)+1}dx =(t+1)/√(x^2+2x+2)dx 与式=∫(x^2+2x+2)/x(t+1)dt ここから分かりません。 解答はarcsinh(x+1)+√2log{x/(x+2+√(2x^2+4x+4))+√(x^2+2x+2)}となっています。 解答までの導き方も合わせて教えていただけると助かります。 略解しかなく、本当に困っています。 どうかよろしくお願いします。

  • 不定積分

    次の問題なんですが、一問目は答えが出ていて二問目が分かりません。 またどちらとも途中のしきが立てられないので、どなたかご指南お願いします。 (1)∫(1/x^3+1)dx    この問題ではx^3+1=(x+1)(x^2-x+1)で分数分解して、両辺にx^3を掛けて係数比較するんですが、そのあとの積分の計算ができません。。。  答えは1/6log(x+1)^2/x^2-x+1 + 1/√3Arctan((2x-1)/√3)らしいんですが。。。 (2)∫{1/(1+x^3)^4/3}dx  こちらの問題は解き方がわかりません。

  • 不定積分

    ∫{(2x+3)/(x^2-x+1)}dx  を解けです。 ∫{(2x-1+4)/(x^2-x+1)}dx =∫{(x^2-x+1)'/(x^2-x+1)}dx+∫{4/(x^2-x+1)}dx =log(x^2-x+1)+4*∫{1/(x^2-x+1)}dx 上記の式までは分かるのですが・・・。 ∫{1/(x^2-x+1)}dx の不定積分が分かりません。 途中式もあっているか確信はありません。 申し訳ございませんがよろしくお願い致します。

その他の回答 (1)

  • 回答No.2

(1/2)log|(x-1)/(x+1)|+log|x^2-1|+C (1/2)log|(x-1)/(x+1)|=(1/2)log|x-1|-(1/2)log|x+1| で第2項は log|x^2-1|=log|(x+1)(x-1)|=log|x+1|+log|x-1| と計算されますから (1/2)log|(x-1)/(x+1)|+log|x^2-1|+C =(1/2)log|x+1|+(3/2)log|x-1|+C です。 つまりshow-tenさんの計算は合っています。 部分分数分解を用いた貴方の解法でOKでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 いつもいつも丁寧にありがとうございます。

関連するQ&A

  • 不定積分

    この不定積分が解けません。 (1)∫5/(2x^2-7x+3)dx (2)∫dx/x(logx)^2 こたえは(1)loglx-3/2x-1l+C (2)-1/logx+Cなんですが わかりませんでした。 わかるかたは教えてくださいませんか?

  • 不定積分の問題なんですが

    ∫2x+1/x+1dxなんですが =∫(2-1/x+1)dx =2x-loglx+1l+c という解答なんですが、 2行目にどうやったら変換できるんでしょうか><

  • 不定積分

    ∫(x+1)/√(2x-x^2)dx =∫(x-1)/√(2x-x^2)dx+2∫1/√(2x-x^2)dx =-1/2∫1/√tdx+2∫1/√{1-(x-1)^2}dx =-√(2x-x^2)+2arcsin(x-1) と解いたのですが、答えは √(2x-x^2)+2arcsin(x-1) となっていました。 何度も解きなおしたのですが、間違いを見つけられません。どこが違っているか教えてほしいです。 回答お願いします。

  • 不定積分の問題について

    写真の問題が検算すると間違っているようですが、積分が違うのか微分が違うのかわかりません。どこが間違っていますか? 問題は、 ∫(2x^4 - 3x^3 + 2x^2 - 3x - 2)/(x^3 - x^2 + x - 1) dx です。 計算すると、答えが x^2 - x + log((x^2 + 1)^(1/2)/(x - 1)^2) + arctanx + C(積分定数) になりました。 でもこれを微分すると (2x^4 - 3x^3 + 2x^2 -2x -2)/(x^3 - x^2 + x - 1) になります。 問題では分子のxの係数は-3だけど計算では-2になってしまいます。

  • 定積分

    次の曲線の長さを求めよ (1)y=(1/3)x^(3/2) (0≦x≦12) (2)y=x(2-x) (0≦x≦2) という問題なのですが、 (1)y´=(1/2)x^(1/2) 公式より 長さs=∫[0→12]√(1+{(1/2)x^(1/2)}^2)dx =∫[0→12]√(1+(1/4)x)dx となるんですが、この積分の仕方がわかりません。 お願いします。 (2)y´=2-2x 長さs=∫[0→2]√(1+{2-2x}^2)dx =∫[0→2]√(1+(4-8x+4x^2))dx =∫[0→2]√(4x^2-8x+5)dx =∫[0→2]√{((2x-2)^2)+1}dx t=2x-2とおくとdx=dt/2 x:0→2、t:-2→2 よって =∫[-2→2](1/2)√(t^2+1)dt 公式より =1/4[t√(t^2+1)+log(t+√(t^2+1))][-2→2] =1/4{ {-2√5+log(-2+√5)}-{2√5+log(2+√5)} } =1/4{-4√5+log(-2+√5)-log(2+√5)} となるんですが、答えは√5+1/2log(2+√5)です。 この計算であってますか。どうすれば、答えになるでしょうか? お願いします。

  • 不定積分の問題です

    ∫(x^4 + x + 1)/(x^3 - 2x^2 + x)dx の答えは 1/2x^2 + 2x + log(x-1)/x + 1/(x-1) + C(積分定数) で、合っていますか?

  • 不定積分の問題

    (1) ∫(x^2+2)/(x+1)^2 dx (2) ∫e^x/(e^2x)-4 dx (3) ∫sin^2xcos^2x dx この三つの問題がわかりません (1)は部分分数に分けてする問題だと思うのですがどうやってわけるのでしょうか。 (2)は部分分数に分けて答えのすぐ近くまでいったのですがよくわからず・・・。 ちなみに∫(1/2*1/e^x+2+1/2*1/e^x-2)までは行ったのですがここからどうすればいいのでしょうか (3)はどのようにやればいいのかよくわかりません よろしくお願いします

  • 不定積分

    ∫cos^2x/(1+sinx) dx という問題があるのですが模範解答は分子を1-sin^2と変形して 約分をし簡単な形に持っていく形式を取っています。私もこれは理解できます。 答え、x+cosx+C 私は違うやり方でやってみたのですが答えが合わずしかも納得がいかないという 悪循環になってしまいました。 下に私のやった方法を書くので間違いを指摘していただければと思います。 ∫cos^2x/(1+sinx) dx sinx=tとおくと cosxdx=dtだから与式は ∫cosx/(1+sinx) dt =∫t'/(1+t) dt =∫(t+1)'/(1+t) dt =log|t+1|+C =log(sin+1)+C お願いいたします

  • 不定積分の問題

    不定積分の問題ですが、部分積分法で解く問題ですが、考えても解答通りにならないので、ここで質問するに至りました。途中計算等を教えてください。お手数になりますが、どうか宜しくお願いします。 (1)∫x sec^(2)(x) dx 私が解くと、xtanx- sec^(2) + c になります。 (2)∫Tan^(-1)(x)dx (3)∫Sin^(-1) (x/3)dx (4)∫e^(-2x) sin3x dx ↑部分積分法を繰り返してもとめるのですが、どのような切り口で求めるのかが分かりませんでした。 答え (1) x tan(x) + log | cos(x) | + C (2) xTan^(-1) (x) - (1/2)log{x^(2) +1} + C (3) xSin^(-1) (x/3) + √(9-x^(2)) + C (4) {-e^(-2x)/13 } (2sin3x + 3cos3x ) + C

  • 不定積分

    何度計算してもめぼしい値が出ないのですが、間違いを指摘して頂けたら幸いです。 (1)∫1/coshx dx t = coshxと置くと 与式 = ∫1/t dx dt/dx = -sinhx dx = dt/-sinhx 与式 = ∫1/t dt/-sinhx = (log t) / -sinhx = (log cosx) / -sinhx (2) ∫xlog(1 + x) dx = (x^2) log(1 + x)/2 - 1/2∫(x^2)/(1 + x) dx - 1/2∫(x^2)/(1 + x) dxに着目する、 x + 1 = u , dx = du - 1/2∫(u - 1)^2/u du = - 1/2∫(u - 1) du = - 1/2(u^2/2 - u) = - (x^2 - 2x-1)/4 -(x - 1)/2 与式 = 1/2 {(x^2) log(1 + x) - (x^2 - 2x-1)/2 -(x - 1)} 初歩的かもしれませんが、宜しくお願い致します。