• 締切済み

数値計算

Σ…Σ{1-(p_i_1 + p_i_2 +…+ p_i_M)}^k 各ΣはΣ_(i_m = 1~N) (1≦m≦M,N=20)の意味。 p_i_m=q(1-q)^(m-1) (幾何分布)とする。 上の式を、計算機などで計算しやすい式の形にできないでしょうか? また、そのアプローチ法などを教えていただけないでしょうか? よろしくお願いします。

みんなの回答

noname#101087
noname#101087
回答No.2

(いまいち当方に誤解があるかも....)  Pim=Qi*{(1-Qi)^(m-1)}  として  {1-(Pi1+Pi2+ .... +PiM)}^k  のiについて総和(1からNまで)。 まず、mについての総和(1~M)。  x^0+x^1+x^2++...x^m={1-x^(m+1)}/(1-x) を使えば  (Pi1+Pi2+ .... +PiM)={1-(1-Qi)^(M+1)} が得られ、  1-(Pi1+Pi2+ .... +PiM)^k=(1-Qi)^{k(M+1)} iについての総和(1~N)は簡略化でないようです。

noname#101087
noname#101087
回答No.1

数学的意味は理解できないので、純粋に計算簡略化の問題としましょう。 計算機なら原式のまま組むのが楽チンそうな気もしますが .... 強いてコメントすれば、  x^0+x^1+x^2++...x^m={1-x^(m+1)}/(1-x) を使えそうなことぐらい。 まず問題の確認。  Pim=Qi(1-Qi)^(m-1)  として  {1-(Pi1+Pi2+ .... +PiM)}^k  のiについて総和を勘定する。 のですか?あるいは、kについても和をとるのでしょうか?

gyuunyuu
質問者

補足

 qのとる値の範囲は0<q<1。  i1,i2,…iMについての和をとる。つまり、Σ記号をM個重ねた部分の計算回数はNのM乗回。  kについては和をとらない。

関連するQ&A

  • Σの計算方法について

    確立の問題を解いていたのですが、途中式に以下の数式がでてきて計算が進みません。 (1)Σ[k=0,n]k*nCk*p^k*q^(n-k) (2)Σ[k=0,n]k(k-1)*nCk*p^k*q^(n-k) (3)Σ[k=0,n]k*p^k*q (1)(2)なんかは、Σ[k=0,n]nCk*p^k*q^(n-k)=(p+q)^nの公式にもっていけばいけそうかと思うのですが、式変形がさっぱりわかりません。 どなたかよろしくお願いします。

  • コンプトン散乱計算の数値代入について

    以前、ここでご教示頂きましたコンプトン散乱の計算式に適当に数値を入れて計算しました。 元の式は、 Tr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd} = Tr[(-2sl[q]+4m)( sl[p]+sl[k]+m)(-2sl[p]+4m)( sl[p]+sl[k]+m)] です。 これを、mathematicaで計算して y4 = 64*k0^2*m^2 - 64*k1^2*m^2 - 64*k2^2*m^2 - 64*k3^2*m^2 + 64*m^4 + 64*k0*m^2*p0 - 64*k1*m^2*p1 - 64*k2*m^2*p2 - 64*k3*m^2*p3 - 64*k0*m^2*q0 + 16*k0^2*p0*q0 + 16*k1^2*p0*q0 + 16*k2^2*p0*q0 + 16*k3^2*p0*q0 - 48*m^2*p0*q0 + 32*k0*p0^2*q0 + 16*p0^3*q0 - 32*k0*k1*p1*q0 - 32*k0*p1^2*q0 - 16*p0*p1^2*q0 - 32*k0*k2*p2*q0 - 32*k0*p2^2*q0 - 16*p0*p2^2*q0 - 32*k0*k3*p3*q0 ・・・・・ 以下省略 x = 2; y = 1; q0 = x; q1 = y; q2 = y; q3 = y; p0 = x; p1 = y; p2 = y; p3 = y;k0 = x; k1 = y; k2 = y; k3 = y; m = Sqrt[q0^2 - q1^2 - q2^2 - q3^2]; Print[N[y4]]; を得て、適当に数値を入れて計算しました。 もちろん適当な数値なので、何の意味もない値が導かれました。そこで質問ですが、この式に意味のある数値を代入して、実験値に近い計算値を導くには、それぞれの変数にどのような値を入れれば良いのでしょうか?

  • 二項分布の期待値の計算過程

    二項分布の期待値を計算しています。 https://mathtrain.jp/bin の中の E[X] = np Σ[k=1, n] n-1 C k-1 p^(k-1) q^(n-k) = np Σ[k=0, n-1] n-1 C k p^k q^(n-1-k) の計算過程を教えて下さい。 この計算の間に k=1 ⇒ k=0 n ⇒ n-1 が変わっています。 それらを一つずつ変更できますでしょうか? 意味は半分わかっているつもりです。 k=1からnだったのが k=0からn-1になったので、 配列が一つズレた印象です。 二行目はn-1に括弧を付けると np Σ[k=0, n-1] n-1 C k p^k q^{(n-1)-k} だと思っています。 ではよろしくお願いします。

  • 次の計算をお教えください。

    p,q=1-pともに定数の時 \sum_{k=0}^n(k+1)p^{2}(1-p)^2 上の式が下の式にどうすればなるのかわかりません。 =p\left[\tfrac{1-q^{n+1}}{p}-(n+1)q^{n+1} \right] よろしくお願いします。

  • 計算量の下界の計算

    ある論文中の回路計算量の下界を求めようと思うのですが、どうも計算がうまくいかないので知恵をお貸しください。 l=√(k)(切り捨て) p=10√(k)log_{2}n(切り上げ) m=(p-1)^{l}*l! この時、size(C)・m^2・(n-l-1)Choose(k-l-1)≧(n)choose(k) という式からsize(C)の下界がn^{Ω(√(k))}と定まるらしいのですが、この導出がわからないのです。 Ωは下界オーダーの記号です。 size(C)≧~という式にしてこの右辺がn^{Ω(√(k))}で表せる式になればよいと思うのですがいまいちうまくいきません。 お分かりの方がいらっしゃいましたら教えていただけると幸いです。 よろしくお願いします。

  • 二項母集団の母比率の区間推定

    ベルヌーイ分布Bi(1,p)に従う母集団からn個の標本を得て、標本和がkとなるとき(あるいは二項分布Bi(n,p)に従う二項母集団から標本X=kを得たとき)の母比率pの精密法による区間推定を考えたいのですが、信頼度100(1-ε)の区間推定において、 下側信頼限界n_2/{n_1F_{n_2}^{n_1}(ε/2)+n_2}、 上側信頼限界m_1F_{m_2}^{m_1}(ε/2)/{m_1F_{m_2}^{m_1}(ε/2)+m_2} で与えられるそうです。ただしF_i^j(ε)は自由度(j,i)のF分布の上側ε点で、n_1=2(n-k+1)、n_2=2(n-k)、m_1=2(k+1)、m_2=2(n-k)です。 なぜF分布により推定できるのかが知りたいです。よろしくお願いします。

  • 判別式の計算

    xについてのn次多項式f(x)=x^n+px+qの判別式の計算をしようとしています。 D(f)=(-1)^{n(n-1)/2}(1/1)R(f,f')を使ってR(f,f')を計算する途中で(2n-1)x(2n-1)行列の行列式を展開してn+1個の(n+1)次元の横ベクトルを並べてできる行列式 det((1,0,...,0,p,q),(p/n,-p,-q,0,...,0),(0,p/n,-p,-q,0,...,0),...,(0,...,0,p/n,-p,-q),(0,1,0,...,0,p/n,0)) に帰着しました。 これをさらに計算するにはどうやればいいのでしょうか?

  • 次の非復元試行の平均(負の超幾何分布?)

    赤玉n、白玉m、n+m=N からなる集団から玉を取り出すとき 最初に白玉を引くまでに引く赤玉の数の 期待値を求めてやりたいです。 0: m/N 1: n/N * m/(N-1) 2: n/N * (n-1)/(N-1) * m/(N-2) : k: n/N * (n-1)/(N-1) *…* (n-k+1)/(N-k+1) * m/(N-k) 各試行は負の超幾何分布の成功回数が1回の場合に 当たると思うのですが、 ネットで調べてみると、負の超幾何分布の確率変数は 試行回数であったり、成功回数であったりばらばらで、 前者の場合の平均値の求め方がよくわかりません。 よろしくお願いします。

  • 分数の未解決問題のことで質問です

    今回はコラッツ予想が正しいと仮定すれば、エルディッシュ分数予想が正しいことを実験的に証明してみたいと思います。自信はありませんが。  ⑴ ある奇数の数列 p[n]を考えます p[n]は 奇数でないといけないと仮定します。p[1]をスタート場所と 考えた時、p[1]は奇数であるとします。次の式が成り 立つとします。  (2^s)・p[n]=3・ p[n−1]+1  ① と式をあらわした時、十分に大きな数をLとした時に、  p[L]=1  となる予想がコラッツ予想だと思っています。  (2^s)・p[n]=3・ p[n−1]+1=m ②  ⑵ こちらの予想はエルディッシュの分数予想で、 a、b、c は任意の自然数を代入可能で、Q[k]は 分数が解ける数で、  Q[k]=24・k+1=4abcーbーc ③ です。  ここで、m=ab とおきmの約数を σ(m)で表すと Q[k]=4mcーcーσ(m)=(4mー1)cーσ(m)④ となります。ちなみにmは偶数です。 ここで④の式のmは任意の偶数ですので、 m=3・p[n−1]+1を代入して計算することが可能で、 計算してみると②と④より  Q[k]=(12・p[n−1]+4−1)cーσ(m)   =3(4・p[nー1]+1)cーσ(m)   =12・c・p[n−1]+3cーσ(m) ⑤ となります。 ここでQ[k]=24k+1、kは自然数です。  Q[k]=12・c・p[n−1]+3cーσ(m)=24k+1 ここで、  12・c・p[n−1]=24k ⑥  3cーσ(m)=1     ⑦ とおくと、⑦より   3cー1=σ(m) dをある自然数とすると、   m=d・(3cー1) ⑧ ⑥より   12・c・p[n−1]=24k c・p[n−1]=2k ⑨ ②、⑧より   3・p[n−1]+1=m=d・(3cー1)となりますので、 d=2とおけば良いと思います。ですのでmは偶数です。 このことを実験的に確かめてみます。 k=18の時は Q[18]=24・18+1=433 ⑨より c・p[nー1]=2・18     c・p[nー1]=36 c=4、p[nー1]=9、k=18、となり、     m=d・(3cー1)=d・11=22 Q[k]=12・c・p[nー1]+3cーσ(m) Q[18]=48・9+12ーσ(22) =432+1 =433 となります。

  • 計算量(オーダー)に関する計算

    計算量に関する式で、わからないことがあります。 f(h)=g(h)+O(h^n),p(h)=q(h)+O(h^m),k=min(n,m)とした時、 1.f(h)+p(h)=g(h)+q(h)+O(h^k) 2.f(h)*p(h)=g(h)*q(h)+O(h^k) 3.f(h)/p(h)+g(h)/q(h)+O(h^k) らしいのですが、この3式が成立する意味がわかりません。k=max(n,m)だったら、成り立つような気がするのですが…。 誰か解説よろしくお願いいたします。