ベストアンサー 実部と虚部が共に正有理数であるような複素数の全体 2006/08/17 01:22 実部と虚部が共に正有理数であるような複素数の全体をA、 実部と虚部が共に自然数となる複素数同士の比として表せる複素数の全体をBとおく時、 A=Bとなるのでしょうか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー fronteye ベストアンサー率43% (118/271) 2006/08/17 04:32 回答No.1 A=Bとはならないと思います。 実部と虚部が共に自然数となる複素数同士の比として (1+i)/(1+2i) ∈B を考えます。 この分母分子に(1-2i)をかけると {(1+i)(1-2i)}/{(1+2i)(1-2i)}=(3-i)/5 となります。 これは、Aの要素にはなりません。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) ojisan7 ベストアンサー率47% (489/1029) 2006/08/17 08:23 回答No.2 AはBの真の部分集合(A⊂B)でしょうか。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素数の実部と虚部 y=√(a+jb)の実部Re(y)と虚部Im(y)はどのように求めたらいいのでしょうか? ルートの中に実数と虚数が入っているのでどのように実部と虚部に分けたらいいのかわかりません。 実部画像と虚部画像の意味 ある画像について、2次元の離散フーリエ変換を 実施し、パワースペクトル画像と実部画像と 虚部画像が得られました。 パワースペクトル画像というものは、 その画像がどのような周波数を持つのかが 分かる画像だということは分かったのですが、 実部画像と虚部画像の意味、またはこれらの画像が 表している情報とは何なのかが分かりません。 質問の仕方が悪いのかもしれませんが、 一般的にフーリエ変換した時に得られる 実部の画像と虚部の画像にはどのような意味が あるのでしょうか? ご存知の方がいましたら、お教え願います。 FORTRAN 複素数 (実部を取り出す方法) fortran77で複素数の実部を取り出したいのですが、 関数が存在するかわかりません。どなたか、ご存知の方、 教えてください。虚部は出せました。 FORTRAN77(SALFORD FTN77)を使っています。 確か、fortran90なら real(○+□i)だったと思います。 周波数伝達関数の実部と虚部について 下の問題をどう考えていいか分かりません。どなたか教えて頂けないでしょうか?宜しくお願いします。 『開ループ周波数伝達関数G(jw)が G(jw)=10/(jw(1+j0.2w))で表される制御系がある。 位相角が-135°角周波数wo[red/s]の値は? ・開ループ周波数伝達関数G(jw)は、woにおいて 実部と虚部が等しくなる。』 ※答えでは 開ループ周波数伝達関数G(jw)は、woにおいて実部と虚部が 等しくなるので G(jw)の分母は jw(1+j0.2w)=jw+j^2*0.2w^2=jw-0.2w^2 のように変形され、実部と虚部の絶対数が等しくなる条件は wo=0.2wo^2 1=0.2wo wo=5[red/s]となる と書いてあるのですが、 「実部と虚部の絶対数が等しくなる条件は wo=0.2wo^2」 という考え方が理解できません。 御手数とは思いますが、宜しくお願いします。 比透磁率の実部と虚部 比透磁率の実部と虚部には、電磁波の伝搬に対してそれぞれどのような意味があり、どのような効果があるのでしょうか。 電磁波の伝搬抑制シートなどを見ていて疑問に思いました。 よろしくお願いします。 数学IIの問題について教えて下さい。次の複素数の実部,虚部をいえ。(1) 数学IIの問題について教えて下さい。次の複素数の実部,虚部をいえ。(1)-1+√3i (2)2+i(3)√7i (4)-5 次に2次方程式2x(2)-2kx+k(2)-8=0が異なる2つの実数解をもつような定数kの値の範囲をもとめよ。 と、言う問題です。宿題では、ありません。休んでいて書いてなかったみたいで月曜日テストで教師に教えてもらう時間もありません。 解き方と答えを載せて返答お願いします 自明でない零点の虚部 リーマン予想:リーマンのゼータ関数の自明でない零点は実部を1/2とする複素数である。 ここで、疑問なのですが、自明でない零点の虚部は、どうなっているのでしょうか。 自明でない零点は無限に存在しているのですから、 虚部が自然数、あるいは、有理数、あるいは、代数的数などの、 自明でない零点は存在するのでしょうか。 是非、知りたいところです。 有理化せずに複素数の偏角を求める方法について 有理化せずに複素数の偏角を求める方法について ある有理化されていない複素数 C/(A+Bi) があっとして (A,B,Cは定数) これを有理化せずに偏角を求める方法はありますでしょうか? 普通は有理化して (D+Ei)/F ここから θ=atan(E/D) と求まると思います。 絶対値の計算は有理化しないでも √(C^2)/√(A^2+B^2) と求められるようですが 偏角でも有理化せずに計算できるテクニックはないのでしょうか? ご存じの方いらっしゃいましたら、是非ご教授お願いします。 有理数と素数の問題 次の問題が解けなくて困っています。 aを自然数とし、a≧2とする。loga2(ログaの2)が正の有理数になるとき、aの約数で素数となるものを求めよ。 分かりやすい解説よろしくお願いします(>_<) 超複素数から更に拡張された数は? 数の拡張について知りたく思っております。 自然数に負数の概念を加えると整数 ↓ 整数に分数の概念を加えると有理数 ↓ 有理数に無理数の概念を加えると実数 ↓ 実数に純虚数の概念を加えると複素数 ↓ 複素数に二重数・双対数・4元数の概念を加えると超複素数 でここから先にも数は拡張されているのでしょうか? 有理数や素数の問題 次の問題が解けなくて困っています。 a,nを自然数とし、a≧2,n≧2とする。loga2が正の有理数になるとき、aの約数で素数となるものを求めよ。 分かりやすい解説よろしくお願いします(>_<) r^(a/b) が有理数ならばr^(1/b) が有理数 分数a/bの分母・分子を既約な整数で、また分母が正とします。 つまり、gcd(a, b) = 1、b > 0。 このとき、rを有理数として、 r^(a/b) が有理数ならばr^(1/b) が有理数 であることは正しいと思われますが、どのように証明できるのでしょうか? 素数と有理数 相違なる素数p,qと、有理数a,b,c,dが a+b√p +c√q +d√pq = 0 をみたせば、a=b=c=d=0であることを示せ。 2の平方根が有理数で表せないことの証明 √2が有理数でないことの証明についての質問です。 有理数だとしてn/mとおいて両辺を二乗して、、、という証明は知ってるのですが、別の証明を見たのですが、いまいちわからないところがありましたので質問させていただきました。 この証明は A={t|t^2<2, tは正の有理数} B={t|t^2>2, tは正の有理数} として、 ∀t∈A, ∃x∈A, t<x ∀t∈B, ∃x∈B, t>x ということを示して(ここまではわかりました) √2は有理数であらわせない→有理数の完備化が必要→実数の紹介という流れで行ってるのですが、なんでAが最大値を持たないこととBが最小値を持たないことが√2が有理数であらわせないことになるのでしょうか? 任意の正の有理数Pについて、x^2+y^2=P…(A) を満たす有理数 任意の正の有理数Pについて、x^2+y^2=P…(A) を満たす有理数x,yは必ず存在しますか? 似たような質問ばかりしてるのに応用力が無くすみません。 Pが有理数pを用いてP=p^2と表せる場合は 適当なピタゴラス数a,b,c(但しa^2+b^2=c^2)を用いて x^2+y^2=p^2{(a/c)^2+(b/c)^2}となるので x=ap/c,y=bp/cが(A)式を満たす有理数の組の1つと言えますが P=p^2と表せない場合も、(A)式を満たすx,yは存在するのでしょうか? 更なる疑問としては、Pが無理数の場合も知りたいのですが…。 cos(有理数*π)=有理数、などについてお尋ね(長文) 先日、「cos(有理数*2π)=有理数となるのはどういったときか」 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2212683 という質問に、親切なご回答を頂きました(感謝です)。 結果だけをまとめますと、 「mとnを互いに素な自然数とする。 cos{(m/n)π}が有理数となる⇔n=1,2,3 sin{(m/n)π}が有理数となる⇔n=1,2,6 tan{(m/n)π}が有理数となる⇔n=1,2」 ここで、新たに疑問が浮かびます。 http://www.iis.it-hiroshima.ac.jp/~ohkawa/math/math_prob_analy.htm の問題177で、 「a(但し、0<a<1/4とする。)を有理数とする時、tan(aπ)は無理数である。」 がGaussの整数環がPIDで有る事を使えば、容易に証明出来るとあります。 (僕が考えた証明、多分不備あり。) tan(aπ)が有理数とすると、 tan(aπ)=y/x(x,yは互いに素な自然数)とかける。 Gaussの整数x+iyを考えると、原点との線分がx軸とのなす角度は、 arg(x+iy)=aπ 有理数a=p/qとして、Gaussの整数x+iyをq乗すると、 arg(x+iy)^q=aπ*q=pπ つまり、 (x+iy)^q=実数 http://members.ld.infoseek.co.jp/aozora_m/suuronN/node57.html に書かれていることから、両辺を因数分解すると、単数倍の違いを除いて一意的。 右辺が奇素数を因数に持つとき、上記サイトの定理40より、 それはガウス素数か、(a+bi)(a-bi)の形になるが、左辺はそれを因数にもたないから不適。 右辺が2を因数に持つとき、上記サイトの定理40の上のコメントより、 それは単数倍の違いを除いて2=(1+i)(1-i)なので、左辺は、x+iy=1+iなどの場合に限られる。 このとき、0<a<1/4では、tan(aπ)=y/x=1に矛盾。証明終わり。 この問題は、aを有理数とするとき、tan(aπ)も有理数であるのは、a=整数or奇数/4と主張しています。 これを使って、Gaussの整数の観点から、cos(aπ)が有理数である条件を求めれないでしょうか? √nが有理数である又はないことの証明。 √3が有理数でないことを、背理法で論証する場合。 √3=a/b(aとbは互いに素であるとする。)と置く。 3b^2=a^2である。 a^2は3の倍数であるので、aは3の倍数であり、a=3cとおくことができる(この事は対偶の真偽で論証できる。) 3b^2=9c^2 b^2=3c^2 であり、b^2が3の倍数なので、bも3の倍数であることが分かる。 よって、a/bは既約分数であることから矛盾が生じ、有理数でないことが言える。 これが√3が有理数でないことの証明だそうです。 次に、nを整数として、√nが有理数でないことを、背理法で論証する場合。 √n=a/b(aとbは互いに素であるとする。)と置く。 nb^2=a^2である。 a^2はnの倍数であるので、aはnの倍数であり、a=ncとおくことができる nb^2=n^2c^2 b^2=nc^2 であり、b^2がnの倍数なので、bもnの倍数であることが分かる。 よって、a/bは既約分数であることから矛盾が生じ、有理数でないことが言える。 ただしn=1.4.9.16・・・といった場合、√n=1.2.3.4・・・といったように、√nは有理数になってしまいます。 このやり方では√nが有理数でも、有理数でないと言えてしまいます。 √nが有理数の場合、有理数であると論証でき、√nが無理数の場合、有理数でないと論証できる方法を教えてください。 自然数から複素数までの拡張について 自然数から、整数、有理数、実数ときて複素数へと拡張された、と講義で聞いたのですが、 実際にどのような手順を踏んで拡張されたのでしょうか? また、それぞれどのような拡張すべき理由があったのでしょうか? どなたかご存知の方がいらっしゃいましたら、回答お願いいたします。 有理数の部分集合が開集合でない事の証明 有理数全体の集合をQとし、このいかなる部分集合(Aとします)も開集合でないことを証明したいのですが、あと一歩のところで躓いています。 開集合の定義は ∀a∈A,∃δ>0,s.t δ-Ball B(a;δ)⊂A ですので 否定命題 ∃a∈A,∀δ>0,s.t B(a;δ)はAから出てしまう。 を示そうと考えました。(⊂の否定が出力できませんでした…) 実数全体は有理数全体と無理数全体で出来ていて、 実数のほとんどは無理数。 従って有理数のすぐ隣は無理数である。 ∴B(a;δ)はAから出てしまう。 このように回答したいのですが「有理数のすぐ隣は無理数である」これをどのように数学的に表現したらよいかわかりません。 わかる方いらっしゃいましたらご教授をお願いします。 平面ベクトルと複素数の関係について 複素数の実部と虚部を平面上の(x,y)と対応づける事をよくしますよね? これには、どのような利点があるのでしょうか? ※複数あると思うので、具体例を列挙していただけると助かります。 また、ベクトルの成分同士(平面ベクトルで言えばxとy)は 次元が違いますからxとyが干渉し合う事はありません。 (yはどこまでいってもどこまで) でも複素数の実部と虚部には i*i = -1 という実部と虚部を繋ぐ関係式があるので 実部と虚部は完全に独立した存在ではないと思うのです。 (もちろん積さえ考えなければ、実部と虚部は独立しているというのは理解できます。。) よって、ベクトルと複素数は似て非なるものではないかとおもうのですが。。 それに関連して、あるサイト上で以下のような記述を発見しました。 「 まずはa→=(1,3),b→=(2,2)のように,ベクトルを成分で表します。これを複素数だと思って, a=1+3i,b=2+2i と読み替えてください。この2つの複素数の掛け算は, (1+3i)(2+2i)=2+2i+6i-6=-4+8i となります。これを再びベクトルとして読み替えると(-4,8)となりますが・・・ 実はこれがベクトルの積の計算方法なのです。 a→×b→=(1,3)×(2,2)=(-4,8) というのが正解です。 」 たとえば、i*i= -2 という風に定義していたとしたらこの計算結果は変わってきますよね? なのでこのように複素数とベクトルを同一視するのはおかしいと思うのですが。。 ベクトルと複素数に関して、理解を深めたいので解説してください。 お願いします!