• ベストアンサー

素数と有理数

相違なる素数p,qと、有理数a,b,c,dが        a+b√p +c√q +d√pq = 0 をみたせば、a=b=c=d=0であることを示せ。 

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

c,d≠0とする。 a+b√p +c√q +d√pq = 0 a+b√p        = -√q(c+d√p) √q=-(a+b√p)/(c+d√p)   =-(a+b√p)(c-d√p)/(c^2-d^2p)   =-{ac-bpd+√p(bc-ad)}/(c^2-d^2p)    (ac-bpd)/(c^2-d^2p)は有理数であり、当然0でなければおかしい。pとqは互いに素ゆえ、(bc-ad)/(c^2-d^2p)も0でなければおかしい。 よって、ac-bpd=0,bc-ad=0, c,d≠0より、 a=bpd/c  ,a=bc/dよって、 bpd/c = bc/d pd/c=c/d p=(c/d)^2 pは素数のはずなのに、同じ有理数の積で表せるのはおかしい。つまり、仮定がまちがっていたのだ。 ∴c=d=0 a+b√p =0→a=b=0  はいいね。教科書に載ってるよ。基本だよ。 ∴a=b=c=d=0 以上!

yonyon
質問者

お礼

おお!ありがとうございます。 すごく良くわかりました。 本当にありがとうございました。

その他の回答 (1)

  • nyonta
  • ベストアンサー率37% (6/16)
回答No.1

あえて、計算で解いてみます。 (注意)「x^2」 は 「xの2乗」 の意 a+b√p +c√q +d√pq = 0 b√p +c√q = -(a +d√pq) (b√p +c√q)(a -d√pq) = -(a +d√pq)(a -d√pq) ab√p +ac√q -bdp√q -cdq√p = -a^2 + (d^2)pq (ab-cdq)√p +(ac-bdp)√q = -a^2 + (d^2)pq p、qは相異なる素数であり、右辺は有理数であるから (ab-cdq) = 0 ・・・(1) 且つ、 (ac-bdp) = 0 ・・・(2) である。すると、右辺より、 a^2 = (d^2)pq ・・・(3) である事が分かる。 (1)、(2)より (b^2)p = (c^2)q よって、 b = c = 0 さらに(3)より、 d = a = 0 でないならば、 d^2 は pq の奇数乗で無ければならない。 しかし、dは有理数なので、そのような d は存在しない。 よって、 a = d = 0 すなわち、a=b=c=d=0 でなければ(必要条件) a+b√p +c√q +d√pq = 0 は成り立たない。 そして、確かに a=b=c=d=0 であれば、この式は成り立つ。(必要十分条件) ∴a+b√p +c√q +d√pq = 0 をみたせば、a=b=c=d=0である。 分かりにくくてごめんなさい。

yonyon
質問者

お礼

とてもよくわかりました! 本当にありがとうございました。

関連するQ&A

  • 数学A 等式を満たす有理数

    次の等式を満たす有理数p,qの値を求めよ。 1+√5p+(3-2√5)q=0 全く分かりません(泣) ヒントに a,bが有理数、√cが無理数のとき、a+b√c=0ならa=b=0 ってあるんですがこれをどうにかして利用するんでしょうか… よろしくお願いします。

  • 有理化せずに複素数の偏角を求める方法について

    有理化せずに複素数の偏角を求める方法について ある有理化されていない複素数 C/(A+Bi) があっとして (A,B,Cは定数) これを有理化せずに偏角を求める方法はありますでしょうか? 普通は有理化して (D+Ei)/F ここから θ=atan(E/D) と求まると思います。 絶対値の計算は有理化しないでも √(C^2)/√(A^2+B^2) と求められるようですが 偏角でも有理化せずに計算できるテクニックはないのでしょうか? ご存じの方いらっしゃいましたら、是非ご教授お願いします。

  • 無理数と有理数の証明

    √2が無理数であることは既知とし、√2+√3が無理数であることを次のように証明した。 まず、p=√2+√3、q=√2ー√3とする。 (1)pq=-1は有理数であるから、もしpが有理数ならqも有理数である。 (2)同様にqが有理数ならpもまた有理数である。 (3)またp+q=2√2は有理数ではないからpが有理数ならqは有理数ではない。 (4)よってqを有理数と仮定しても有理数でないと仮定してもpは有理数である。 (5)それゆえpうぃ有理数と仮定すると矛盾が生じる。 異常によりpは無理数である。 上の証明で不要と思われる文章を教えて下さい。 頭が混乱してさっぱり分かりません。 ご教示いただけますと助かります。

  • 背理法を用いた有理数の証明

    「a,b,c,dが有理数で a+b√2=c+d√2 ならばa=c, b=dであることを証明してください」 の解き方が全く理解できません。 どなたか解説をお願いします。

  • 任意の正の有理数Pについて、x^2+y^2=P…(A) を満たす有理数

    任意の正の有理数Pについて、x^2+y^2=P…(A) を満たす有理数x,yは必ず存在しますか? 似たような質問ばかりしてるのに応用力が無くすみません。 Pが有理数pを用いてP=p^2と表せる場合は 適当なピタゴラス数a,b,c(但しa^2+b^2=c^2)を用いて x^2+y^2=p^2{(a/c)^2+(b/c)^2}となるので x=ap/c,y=bp/cが(A)式を満たす有理数の組の1つと言えますが P=p^2と表せない場合も、(A)式を満たすx,yは存在するのでしょうか? 更なる疑問としては、Pが無理数の場合も知りたいのですが…。

  • 有理数

    p/(√2-1)+q/√2=1 を満たす有理数p、qはどうやって求めればいいのですか?

  • (x,y)に有理数があるかどうか

    x,yを実数としたとき(x<y)、区間(x,y)に有理数があることをしめすという教科書の問題を模範解答とは違う方法でやってみたので、間違ってるところを指摘もらえますか?よろしくお願いします。 有理数は上にも下にも有界でないので、p<x<y<qとなる有理数p、qが存在する。 1. (p+q)/2∈(x,y)ならば終了 2. そうじゃない場合 a) y<(p+q)/2 ならば (p+q)/2=q_1とし p<x<y<q_1 b) (p+q)/2<x ならば p_1=(p+q)/2とし (p_1)<x<y<q と区間を狭めていく。 そこからまた 不等式の両端を平均して、、、というのをくりかえす 有理数足す有理数÷2は有理数。 y-xは無限大や無限小ではないので、 有限回のうちに区間(x,y)に平均値を持つような有理数が出てくる といった感じでしめせてますでしょうか。。。?

  • cos(有理数*π)=有理数、などについてお尋ね(長文)

    先日、「cos(有理数*2π)=有理数となるのはどういったときか」 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2212683 という質問に、親切なご回答を頂きました(感謝です)。 結果だけをまとめますと、 「mとnを互いに素な自然数とする。 cos{(m/n)π}が有理数となる⇔n=1,2,3 sin{(m/n)π}が有理数となる⇔n=1,2,6 tan{(m/n)π}が有理数となる⇔n=1,2」 ここで、新たに疑問が浮かびます。 http://www.iis.it-hiroshima.ac.jp/~ohkawa/math/math_prob_analy.htm の問題177で、 「a(但し、0<a<1/4とする。)を有理数とする時、tan(aπ)は無理数である。」 がGaussの整数環がPIDで有る事を使えば、容易に証明出来るとあります。 (僕が考えた証明、多分不備あり。) tan(aπ)が有理数とすると、 tan(aπ)=y/x(x,yは互いに素な自然数)とかける。 Gaussの整数x+iyを考えると、原点との線分がx軸とのなす角度は、 arg(x+iy)=aπ 有理数a=p/qとして、Gaussの整数x+iyをq乗すると、 arg(x+iy)^q=aπ*q=pπ つまり、 (x+iy)^q=実数 http://members.ld.infoseek.co.jp/aozora_m/suuronN/node57.html に書かれていることから、両辺を因数分解すると、単数倍の違いを除いて一意的。 右辺が奇素数を因数に持つとき、上記サイトの定理40より、 それはガウス素数か、(a+bi)(a-bi)の形になるが、左辺はそれを因数にもたないから不適。 右辺が2を因数に持つとき、上記サイトの定理40の上のコメントより、 それは単数倍の違いを除いて2=(1+i)(1-i)なので、左辺は、x+iy=1+iなどの場合に限られる。 このとき、0<a<1/4では、tan(aπ)=y/x=1に矛盾。証明終わり。 この問題は、aを有理数とするとき、tan(aπ)も有理数であるのは、a=整数or奇数/4と主張しています。 これを使って、Gaussの整数の観点から、cos(aπ)が有理数である条件を求めれないでしょうか?

  • √nが有理数である又はないことの証明。

    √3が有理数でないことを、背理法で論証する場合。 √3=a/b(aとbは互いに素であるとする。)と置く。 3b^2=a^2である。 a^2は3の倍数であるので、aは3の倍数であり、a=3cとおくことができる(この事は対偶の真偽で論証できる。) 3b^2=9c^2 b^2=3c^2 であり、b^2が3の倍数なので、bも3の倍数であることが分かる。 よって、a/bは既約分数であることから矛盾が生じ、有理数でないことが言える。 これが√3が有理数でないことの証明だそうです。 次に、nを整数として、√nが有理数でないことを、背理法で論証する場合。 √n=a/b(aとbは互いに素であるとする。)と置く。 nb^2=a^2である。 a^2はnの倍数であるので、aはnの倍数であり、a=ncとおくことができる nb^2=n^2c^2 b^2=nc^2 であり、b^2がnの倍数なので、bもnの倍数であることが分かる。 よって、a/bは既約分数であることから矛盾が生じ、有理数でないことが言える。 ただしn=1.4.9.16・・・といった場合、√n=1.2.3.4・・・といったように、√nは有理数になってしまいます。 このやり方では√nが有理数でも、有理数でないと言えてしまいます。 √nが有理数の場合、有理数であると論証でき、√nが無理数の場合、有理数でないと論証できる方法を教えてください。

  • 整数、有理数、実数について

    A0={p∈R:p<√2}Rは実数 A1={p∈Q:p<√2}Qは有理数 A2={p∈Z:p<√2}Zは整数 このときA0⊃A1⊃A2を示せ。という問題なのですが、明らかに自明なので一体どうやったら証明できるのかで悩んでいます。皆さんならどのように証明されますか?背理法が有効なのでしょうか?