• ベストアンサー

部分列って?

connykellyの回答

  • ベストアンサー
回答No.2

ココ↓ http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/index.htm の解析学-(1)極限 をご覧になってください。点列、部分列の詳しい説明が載っています。

参考URL:
http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/index.htm
noname#73577
質問者

補足

ありがとうございます。 部分列の説明はわかったのですが、やはりどうして最初からこういう点列があるといわないのかわかりません。 部分列は点列の中の特別な条件をみたすものだけ抜き出したものと考えればいいのでしょうか? よろしくお願いいたします。

関連するQ&A

  • コーシー列の問題です。

    コーシー列の問題です。 P_0をR^2の一点とし、点列{P_n;n=0,1,2...}を P_(n+1)=f(P_n),n=0,1,2... ノルムに関して||f(P)-f(Q)||≦||P-Q||は成立している。 このとき、この点列P_nはコーシー列であることを示したいのですが、 コーシー列を示すには、n,m→∞にして示すのは分かっているのですが、 この問題に関しては、 ||f(P_m)-f(P_n)||≦\\\≦||f(P_(m-n))-f(P_0)||なので、 n,m→0にして示すのですか? もしそうなら このときのコーシー列の定義式は何ですか? また実数の距離空間が完備のは、連続かつ有界という理由からですか? よろしくお願いします。

  • 部分数列と有界

    こんにちは。 「数列(An)が有界でない⇔すべてのk(自然数)について|Ank|>=kである部分数列{Ank}が存在する」を示す問題です。 <考え方と解答> ・A=数列{An}が有界でない ・B=すべてのk(自然数)について、|Ank|>=kである部分数列{An}が存在する 論理の対偶を示す。 ・Aでない=数列{An}が有界である ・Bでない=あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在する "Bでない→Aでない" つまり「あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在するならば数列{An}が有界である」を示す。 (証明) あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在すると仮定すると、   ( (1) ) すべてのAnkに対して、|Ank|<Mとなる正の定数Mが存在するので、数列{An}が有界である。Q.E.D.   "Aでない→Bでない" つまり「数列{An}が有界であるならば、あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在する」を示す。 (証明) 数列{An}が有界であるならば、すべてのnについて、、|An|<Mとなる正の定数Mが存在するので、   ( (2) ) あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在する。Q.E.D.    以上より必要十分が示せた。 <質問> (1)(1)と(2)に何か言葉を入れるべきでしょうか??いきなり答えを言っているような気がしています。 (2)この対偶をとっての解答で間違っている所はありますか?? 前に質問させてもらい、考えてもう一度書かせてもらいました。 アドバイスお願いします!!!

  • 部分列の収束性

    こんばんは。「数列があって、それの収束する任意の部分列が同じ極限に収束するならば、その数列自身がその極限に収束する。ということを証明せよという問題です。 もしその数列がコーシー列であればその部分列がそのコーシー列と同じ値に収束するというのは証明したのですが、この問題では数列があってとだけ言ってます。コーシー列ならば、εーN法で行けるのですが、この場合どうやって証明すればいいのでしょうか?どなたか分かる方、証明宜しくお願いします。

  • 収束列の部分列について

    はじめて質問させていただきます。 学校で位相幾何学を学んでいるのですが、なぜ収束列の部分列が同じ値に収束するのかがどうしても分かりません。 感覚的には分かるのですが、証明しろと言われると何をどうしていいのかさっぱり分からなくなってしまいます。 よろしくお願いします。

  • ワイエルシュトラスの多項式近似定理の証明

    詳しく証明を書きたいのですが、教科書等で調べてもわかりません。 f(t)を有界閉区間[a,b]で連続な任意の関数とするとき、区間[a,b]上一様にf(x)に収束するような多項式の列{Pn(t)}が存在する。 というものの証明です。

  • 距離空間におけるコンパクト性

    距離空間において、コンパクト集合と点列コンパクト集合が同値であることの証明をできるだけ理解したいのですが、参考書のの証明がイマイチ理解できません。 (参考書の証明) (1) コンパクト距離空間Xの任意の点列{x_n}n=1,2,…が収束部分列をもつことを示す。 この点列に対して、A_k={x_k,x_k+1,…}とおき、その閉包(A_k)'全体のなす集合族{(A_k)'}を考える。 {(A_k)'}の各元(A_k)'は空でない閉集合で、単調減少(A_1)'⊃(A_2)'⊃…(A_k)'⊃…であるから有限交叉性をもつ。したがって、Xのコンパクト性より共通部分(A_k)'は空でない。共通部分(A_k)'から1点xを選べば、xは(A_1)'に属するからd(x_(n_k),x)≦1/kなるx_(n_k)∈A_kが存在する。このとき、n_k≧kより数列{n_k}は異なる自数数を無限個含むから、{x_(n_k)}は{x_n}の部分列であり、また明らかにxに収束する。よって、点列{x_n}は収束部分列をもつ。 (2) 距離空間Xが点列コンパクトであると仮定し、Xの任意の開被覆{V_λ}が有限部分被覆をもつことを言う。最初に、{V_λ}に対して、ε>0が存在して、任意のx∈Xのε近傍U(x;ε)が{V_λ}のどれかの元V_λに含まれることを示す。このようなεを開被覆{V_λ}のルベーグ数とよぶ。ルベーグ数が存在しないならば、各kに対し、その1/k近傍がどの{V_λ}の元にも含まれないような点x_k∈Xをとることができる。こうして得られた点列{x_k}は、Xの点列コンパクト性より収束部分列をもつ。その極限をx_∞とおくと、{V_λ}はXの被覆であるから適当なV_λ∈{V_λ}がx_∞を含む。V_λは開集合であるから、μ>0が存在してU(x_∞;μ)⊂V_λ。十分大きいk'をとれば、1/k'<μ/2とd(x_k'、x_∞;μ)<μ/2とが同時に成り立つが、このときU(x_k';1/k')⊂U(x_∞;μ)⊂V_λとなって点列{x_k}のとりかたに矛盾する。すなわちルベーグ数の存在が示さfれた。さて開被覆{V_λ}が有限部分被覆を持たないとして矛盾を導く。{V_λ}に対するルベーグ数をεとし、これを用いてXの点列{x_n}を以下のように構成する。まず任意のx_1∈Xを選ぶ。このとき、U(x_1;ε)を含むV_(λ1)∈{V_λ}が存在する。もし、X-V_(λ1)が空ならばXがV_(λ1)だけで覆われるからX-V_(λ1)≠φであり、点x_2∈、X-V_(λ1)を選ぶ事ができる。同様にU(x_2;ε)を含むV_(λ2)∈{V_λ}が存在するが、X-(V_(λ1)またはV_(λ2))はやはり空でない。よって、x_3∈X-(V_(λ1)またはV_(λ2))を選ぶ事ができる。この操作を繰りかえして得られた点列{x_n}はn>mに対してx_nはU(x_m;ε)に含まれない、すなわちd(x_n、x_m)≧εを満たすから収束部分列を含みえない。これはXが点列コンパクトであることに反し、矛盾が生じた。 (証明終わり) まず有限交叉性の全く意味がわかりません。 私は、点列コンパクトとコンパクトの定義を以下のように学習しています。 X:集合、P:開集合族 (X、P):位相空間 K⊂Xがコンパクト ⇔{U_λ}⊂Pかつ和集合U_λ⊃K(λ∈Λ)、この時、和集合U_(λ_k)⊃K(k=1→n)となるようなλ_1、…、λ_n∈Λが存在する。 K⊂Xが点列コンパクト ⇔K内の任意の無限点列{x_n}(n=1、2、…)がKの点に収束する部分列を持つ。 なるべく定義に従って、証明していきたいです。 どなたか、詳しく証明を解説してほしいです。 回答よろしくお願いします。

  • コーシー列についての問を教えてください

    問                                                             数列{an}が、コーシー列ならば、数列{an}が収束することを示せ。(※有界な実数列は常に収束する部分列をもつことを用いていい)  

  • 極限の証明を教えてください!!

    大学に入り、数学の授業をとっているのですが、どうしても数学が苦手で授業についていけません。そこでこの問題の証明のしかたがよくわからなかったのでどうか教えてください。 [0、∞)上の関数f(x)が非減少かつ有界ならば、limf(x) (limの下はx→∞)が存在することを証明せよ。(ただし、非減少とはx<y→f(x)<f(y))有界とは、M>0が存在して 絶対値のf(x)≦M(すべてのx) どうかよろしくお願いします。

  • 文字列の部分読み込み

    C言語によるプログラムを勉強中なのですが、分からないことがあるので質問させてください。 「fgets」を用いてファイルから一行分の文字列を読み込んだのですが、この文字列の○文字目から×文字目を読み込む関数などはあるのでしょうか? もし無ければ、どのようにしたら読み込めるのでしょうか? 読み込んだ文字列は □□□□1234□□□5678□□abcd のようなもので、□は半角のスペースです。 区切り文字などが無く、先頭の半角スペース部分に文字が入る場合もあるので、○文字目から×文字目のように指定したいと思っています。 初心者で申し訳ありませんが、よろしくお願いいたします。

  • 導関数の可積分性

    fをC^2級の函数とします。つまり二階導関数まで存在してそれは連続。 さらにfとf"はともに可積分(ルベーグ可積分)とします。 このときf'も可積分になることは示されるものなのでしょうか? 容易に出来る気もするのですが、混乱してできません。 もし万が一反例があるのなら、それを教えて頂きたいです。 あとこれだけの主張でも証明できるような気はするのですが、 fおよび、f"がともに有界(したがってf'も有界になりますが) という付加条件をつける必要があるのならそうしていただけるとありがたいです。 とにかくf'の可積分性がどうしてもいいたいです。